Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
1.
Cell ; 187(17): 4586-4604.e20, 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39137778

ABSTRACT

Respiratory infections cause significant morbidity and mortality, yet it is unclear why some individuals succumb to severe disease. In patients hospitalized with avian A(H7N9) influenza, we investigated early drivers underpinning fatal disease. Transcriptomics strongly linked oleoyl-acyl-carrier-protein (ACP) hydrolase (OLAH), an enzyme mediating fatty acid production, with fatal A(H7N9) early after hospital admission, persisting until death. Recovered patients had low OLAH expression throughout hospitalization. High OLAH levels were also detected in patients hospitalized with life-threatening seasonal influenza, COVID-19, respiratory syncytial virus (RSV), and multisystem inflammatory syndrome in children (MIS-C) but not during mild disease. In olah-/- mice, lethal influenza infection led to survival and mild disease as well as reduced lung viral loads, tissue damage, infection-driven pulmonary cell infiltration, and inflammation. This was underpinned by differential lipid droplet dynamics as well as reduced viral replication and virus-induced inflammation in macrophages. Supplementation of oleic acid, the main product of OLAH, increased influenza replication in macrophages and their inflammatory potential. Our findings define how the expression of OLAH drives life-threatening viral disease.


Subject(s)
COVID-19 , Influenza, Human , Animals , Humans , Mice , COVID-19/virology , COVID-19/genetics , Influenza, Human/virology , Virus Replication , Macrophages/metabolism , Macrophages/virology , Female , Male , SARS-CoV-2 , Lung/virology , Lung/pathology , Lung/metabolism , Mice, Inbred C57BL , Oleic Acid/metabolism , Respiratory Syncytial Virus Infections/virology , Mice, Knockout , Viral Load , Carboxylic Ester Hydrolases/metabolism , Carboxylic Ester Hydrolases/genetics , Orthomyxoviridae Infections/virology , Respiratory Tract Infections/virology , Child
3.
Nat Commun ; 15(1): 3387, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38684663

ABSTRACT

Influenza B viruses (IBVs) cause substantive morbidity and mortality, and yet immunity towards IBVs remains understudied. CD8+ T-cells provide broadly cross-reactive immunity and alleviate disease severity by recognizing conserved epitopes. Despite the IBV burden, only 18 IBV-specific T-cell epitopes restricted by 5 HLAs have been identified currently. A broader array of conserved IBV T-cell epitopes is needed to develop effective cross-reactive T-cell based IBV vaccines. Here we identify 9 highly conserved IBV CD8+ T-cell epitopes restricted to HLA-B*07:02, HLA-B*08:01 and HLA-B*35:01. Memory IBV-specific tetramer+CD8+ T-cells are present within blood and tissues. Frequencies of IBV-specific CD8+ T-cells decline with age, but maintain a central memory phenotype. HLA-B*07:02 and HLA-B*08:01-restricted NP30-38 epitope-specific T-cells have distinct T-cell receptor repertoires. We provide structural basis for the IBV HLA-B*07:02-restricted NS1196-206 (11-mer) and HLA-B*07:02-restricted NP30-38 epitope presentation. Our study increases the number of IBV CD8+ T-cell epitopes, and defines IBV-specific CD8+ T-cells at cellular and molecular levels, across tissues and age.


Subject(s)
CD8-Positive T-Lymphocytes , Epitopes, T-Lymphocyte , Influenza B virus , Influenza, Human , CD8-Positive T-Lymphocytes/immunology , Humans , Epitopes, T-Lymphocyte/immunology , Influenza B virus/immunology , Influenza, Human/immunology , Influenza, Human/virology , Adult , Middle Aged , Aged , Cross Reactions/immunology , Young Adult , Female , Male , Immunologic Memory/immunology , Adolescent , HLA-B Antigens/immunology , Child , Child, Preschool
4.
J Neurol Neurosurg Psychiatry ; 95(9): 855-864, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-38548324

ABSTRACT

BACKGROUND: Messenger RNA (mRNA) vaccines provide robust protection against SARS-CoV-2 in healthy individuals. However, immunity after vaccination of patients with multiple sclerosis (MS) treated with ocrelizumab (OCR), a B cell-depleting anti-CD20 monoclonal antibody, is not yet fully understood. METHODS: In this study, deep immune profiling techniques were employed to investigate the immune response induced by SARS-CoV-2 mRNA vaccines in untreated patients with MS (n=21), OCR-treated patients with MS (n=57) and healthy individuals (n=30). RESULTS: Among OCR-treated patients with MS, 63% did not produce detectable levels of antibodies (non-seroconverted), and those who did have lower spike receptor-binding domain-specific IgG responses compared with healthy individuals and untreated patients with MS. Before vaccination, no discernible immunological differences were observed between non-seroconverted and seroconverted OCR-treated patients with MS. However, non-seroconverted patients received overall more OCR infusions, had shorter intervals since their last OCR infusion and displayed higher OCR serum concentrations at the time of their initial vaccination. Following two vaccinations, non-seroconverted patients displayed smaller B cell compartments but instead exhibited more robust activation of general CD4+ and CD8+ T cell compartments, as indicated by upregulation of CD38 and HLA-DR surface expression, when compared with seroconverted patients. CONCLUSION: These findings highlight the importance of optimising treatment regimens when scheduling SARS-CoV-2 vaccination for OCR-treated patients with MS to maximise their humoral and cellular immune responses. This study provides valuable insights for optimising vaccination strategies in OCR-treated patients with MS, including the identification of CD38 and HLA-DR as potential markers to explore vaccine efficacy in non-seroconverting OCR-treated patients with MS.


Subject(s)
ADP-ribosyl Cyclase 1 , Antibodies, Monoclonal, Humanized , COVID-19 Vaccines , COVID-19 , HLA-DR Antigens , Multiple Sclerosis , Humans , Female , Male , ADP-ribosyl Cyclase 1/immunology , Multiple Sclerosis/immunology , Multiple Sclerosis/drug therapy , COVID-19 Vaccines/therapeutic use , COVID-19 Vaccines/immunology , HLA-DR Antigens/immunology , Adult , Middle Aged , COVID-19/prevention & control , COVID-19/immunology , Antibodies, Monoclonal, Humanized/therapeutic use , SARS-CoV-2/immunology , Lymphocyte Activation , Antibodies, Viral/blood , mRNA Vaccines/therapeutic use , Antigens, CD20/immunology , Vaccination , CD4-Positive T-Lymphocytes/immunology , Membrane Glycoproteins
5.
Virus Res ; 343: 199355, 2024 05.
Article in English | MEDLINE | ID: mdl-38490580

ABSTRACT

Influenza viruses are notorious for their capacity to evade host immunity. Not only can they evade recognition by virus-neutralizing antibodies, there is also evidence that they accumulate mutations in epitopes recognized by virus-specific CD8+T cells. In addition, we have shown previously that human influenza A viruses were less well recognized than avian influenza viruses by CD8+T cells directed to the highly conserved, HLA-A*02:01 restricted M158-66 epitope located in the Matrix 1 (M1) protein. Amino acid differences at residues outside the epitope were responsible for the differential recognition, and it was hypothesized that this reflected immune adaptation of human influenza viruses to selective pressure exerted by M158-66-specific CD8+T cells in the human population. In the present study, we tested this hypothesis and investigated if selective pressure exerted by M158-66 epitope-specific CD8+T cells could drive mutations at the extra-epitopic residues in vitro. To this end, isogenic influenza A viruses with the M1 gene of a human or an avian influenza virus were serially passaged in human lung epithelial A549 cells that transgenically express the HLA-A*02:01 molecule or not, in the presence or absence of M158-66 epitope-specific CD8+T cells. Especially in the virus with the M1 gene of an avian influenza virus, variants emerged with mutations at the extra-epitopic residues associated with reduced recognition by M158-66-specific T cells as detected by Next Generation Sequencing. Although the emergence of these variants was observed in the absence of selective pressure exerted by M158-66 epitope-specific CD8+T cells, their proportion was much larger in the presence of this selective pressure.


Subject(s)
Fluprednisolone/analogs & derivatives , Influenza A virus , Influenza in Birds , Animals , Humans , Amino Acid Substitution , Epitopes, T-Lymphocyte , CD8-Positive T-Lymphocytes , Influenza A virus/genetics , HLA-A Antigens/genetics , HLA-A Antigens/metabolism
6.
J Immunol Methods ; 528: 113651, 2024 May.
Article in English | MEDLINE | ID: mdl-38417671

ABSTRACT

Premature lymphocytes develop into non-autoreactive, mature naïve CD4+ or CD8+ T cells in the thymus before entering the circulation. However, in-depth characterization of human thymocyte development remains challenging due to limited availability of human thymus samples and the fragile nature of thymocyte populations. Thymocytes often do not survive cryopreservation and thawing procedures, especially the fragile CD4+CD8+ double positive population. It is generally recommended to use fresh human thymus tissue on the day of excision to avoid any biases in thymocyte composition. This hampers the possibility to perform multiple experiments on the same thymus sample. To establish how the thymocyte viability and composition can be maintained, we compared two thymocyte isolation methods used for human and/or mice thymi, three cryopreservation methods in combination with our most gentle thawing technique. Based on our findings we established that fresh human thymi remain viable in cold storage for up to two days post-surgery without compromising thymocyte composition. Thymocytes can be cryopreserved if required, although the CD4+CD8+ double positive populations may be reduced. Our study provides thoroughly optimized methods to study human thymocyte development over a considerable time-frame post-surgery.


Subject(s)
CD8-Positive T-Lymphocytes , Thymocytes , Mice , Animals , Humans , Thymus Gland , Cell Differentiation
7.
J Autoimmun ; 144: 103175, 2024 04.
Article in English | MEDLINE | ID: mdl-38387105

ABSTRACT

SARS-CoV-2-specific CD8+ T cells recognize conserved viral peptides and in the absence of cross-reactive antibodies form an important line of protection against emerging viral variants as they ameliorate disease severity. SARS-CoV-2 mRNA vaccines induce robust spike-specific antibody and T cell responses in healthy individuals, but their effectiveness in patients with chronic immune-mediated inflammatory disorders (IMIDs) is less well defined. These patients are often treated with systemic immunosuppressants, which may negatively affect vaccine-induced immunity. Indeed, TNF inhibitor (TNFi)-treated inflammatory bowel disease (IBD) patients display reduced ability to maintain SARS-CoV-2 antibody responses post-vaccination, yet the effects on CD8+ T cells remain unclear. Here, we analyzed the impact of IBD and TNFi treatment on mRNA-1273 vaccine-induced CD8+ T cell responses compared to healthy controls in SARS-CoV-2 experienced and inexperienced patients. CD8+ T cells were analyzed for their ability to recognize 32 SARS-CoV-2-specific epitopes, restricted by 10 common HLA class I allotypes using heterotetramer combinatorial coding. This strategy allowed in-depth ex vivo profiling of the vaccine-induced CD8+ T cell responses using phenotypic and activation markers. mRNA vaccination of TNFi-treated and untreated IBD patients induced robust spike-specific CD8+ T cell responses with a predominant central memory and activated phenotype, comparable to those in healthy controls. Prominent non-spike-specific CD8+ T cell responses were observed in SARS-CoV-2 experienced donors prior to vaccination. Non-spike-specific CD8+ T cells persisted and spike-specific CD8+ T cells notably expanded after vaccination in these patient cohorts. Our data demonstrate that regardless of TNFi treatment or prior SARS-CoV-2 infection, IBD patients benefit from vaccination by inducing a robust spike-specific CD8+ T cell response.


Subject(s)
COVID-19 , Inflammatory Bowel Diseases , Humans , CD8-Positive T-Lymphocytes , SARS-CoV-2 , 2019-nCoV Vaccine mRNA-1273 , Tumor Necrosis Factor Inhibitors , Vaccination , Antibodies , Inflammatory Bowel Diseases/drug therapy , Antibodies, Viral
8.
Cell Mol Life Sci ; 81(1): 35, 2024 Jan 12.
Article in English | MEDLINE | ID: mdl-38214784

ABSTRACT

Diabetes mellitus is on the rise globally and is a known susceptibility factor for severe influenza virus infections. However, the mechanisms by which diabetes increases the severity of an influenza virus infection are yet to be fully defined. Diabetes mellitus is hallmarked by high glucose concentrations in the blood. We hypothesized that these high glucose concentrations affect the functionality of CD8+ T cells, which play a key role eliminating virus-infected cells and have been shown to decrease influenza disease severity. To study the effect of hyperglycemia on CD8+ T cell function, we stimulated peripheral blood mononuclear cells (PBMCs) from donors with and without diabetes with influenza A virus, anti-CD3/anti-CD28-coated beads, PMA and ionomycin (PMA/I), or an influenza viral peptide pool. After stimulation, cells were assessed for functionality [as defined by expression of IFN-γ, TNF-α, macrophage inflammatory protein (MIP)-1ß, and lysosomal-associated membrane protein-1 (CD107a)] using flow cytometry. Our results showed that increasing HbA1c correlated with a reduction in TNF-α production by CD8+ T cells in response to influenza stimulation in a TCR-specific manner. This was not associated with any changes to CD8+ T cell subsets. We conclude that hyperglycemia impairs CD8+ T cell function to influenza virus infection, which may be linked with the increased risk of severe influenza in patients with diabetes.


Subject(s)
Diabetes Mellitus , Hyperglycemia , Influenza A virus , Influenza, Human , Humans , CD8-Positive T-Lymphocytes/metabolism , Diabetes Mellitus/metabolism , Glucose/metabolism , Glycated Hemoglobin , Hyperglycemia/metabolism , Leukocytes, Mononuclear/metabolism , Receptors, Antigen, T-Cell/metabolism , Tumor Necrosis Factor-alpha/metabolism
9.
Nat Immunol ; 24(11): 1890-1907, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37749325

ABSTRACT

CD8+ T cells provide robust antiviral immunity, but how epitope-specific T cells evolve across the human lifespan is unclear. Here we defined CD8+ T cell immunity directed at the prominent influenza epitope HLA-A*02:01-M158-66 (A2/M158) across four age groups at phenotypic, transcriptomic, clonal and functional levels. We identify a linear differentiation trajectory from newborns to children then adults, followed by divergence and a clonal reset in older adults. Gene profiles in older adults closely resemble those of newborns and children, despite being clonally distinct. Only child-derived and adult-derived A2/M158+CD8+ T cells had the potential to differentiate into highly cytotoxic epitope-specific CD8+ T cells, which was linked to highly functional public T cell receptor (TCR)αß signatures. Suboptimal TCRαß signatures in older adults led to less proliferation, polyfunctionality, avidity and recognition of peptide mutants, although displayed no signs of exhaustion. These data suggest that priming T cells at different stages of life might greatly affect CD8+ T cell responses toward viral infections.


Subject(s)
CD8-Positive T-Lymphocytes , Longevity , Infant, Newborn , Humans , Aged , Epitopes, T-Lymphocyte/genetics , T-Lymphocytes, Cytotoxic , Receptors, Antigen, T-Cell, alpha-beta/genetics , Receptors, Antigen, T-Cell/genetics
10.
Nat Immunol ; 24(6): 979-990, 2023 06.
Article in English | MEDLINE | ID: mdl-37188942

ABSTRACT

Antiviral CD8+ T cell immunity depends on the integration of various contextual cues, but how antigen-presenting cells (APCs) consolidate these signals for decoding by T cells remains unclear. Here, we describe gradual interferon-α/interferon-ß (IFNα/ß)-induced transcriptional adaptations that endow APCs with the capacity to rapidly activate the transcriptional regulators p65, IRF1 and FOS after CD4+ T cell-mediated CD40 stimulation. While these responses operate through broadly used signaling components, they induce a unique set of co-stimulatory molecules and soluble mediators that cannot be elicited by IFNα/ß or CD40 alone. These responses are critical for the acquisition of antiviral CD8+ T cell effector function, and their activity in APCs from individuals infected with severe acute respiratory syndrome coronavirus 2 correlates with milder disease. These observations uncover a sequential integration process whereby APCs rely on CD4+ T cells to select the innate circuits that guide antiviral CD8+ T cell responses.


Subject(s)
Antiviral Agents , COVID-19 , Humans , Calibration , Antigen-Presenting Cells , CD8-Positive T-Lymphocytes , CD40 Antigens , Interferon-alpha , CD4-Positive T-Lymphocytes
11.
JCI Insight ; 8(7)2023 04 10.
Article in English | MEDLINE | ID: mdl-37036008

ABSTRACT

Pregnancy poses a greater risk for severe COVID-19; however, underlying immunological changes associated with SARS-CoV-2 during pregnancy are poorly understood. We defined immune responses to SARS-CoV-2 in unvaccinated pregnant and nonpregnant women with acute and convalescent COVID-19, quantifying 217 immunological parameters. Humoral responses to SARS-CoV-2 were similar in pregnant and nonpregnant women, although our systems serology approach revealed distinct antibody and FcγR profiles between pregnant and nonpregnant women. Cellular analyses demonstrated marked differences in NK cell and unconventional T cell activation dynamics in pregnant women. Healthy pregnant women displayed preactivated NK cells and γδ T cells when compared with healthy nonpregnant women, which remained unchanged during acute and convalescent COVID-19. Conversely, nonpregnant women had prototypical activation of NK and γδ T cells. Activation of CD4+ and CD8+ T cells and T follicular helper cells was similar in SARS-CoV-2-infected pregnant and nonpregnant women, while antibody-secreting B cells were increased in pregnant women during acute COVID-19. Elevated levels of IL-8, IL-10, and IL-18 were found in pregnant women in their healthy state, and these cytokine levels remained elevated during acute and convalescent COVID-19. Collectively, we demonstrate perturbations in NK cell and γδ T cell activation in unvaccinated pregnant women with COVID-19, which may impact disease progression and severity during pregnancy.


Subject(s)
COVID-19 , Pregnancy , Female , Humans , SARS-CoV-2 , Killer Cells, Natural , CD8-Positive T-Lymphocytes , Antibodies
12.
Clin Transl Immunology ; 11(10): e1423, 2022.
Article in English | MEDLINE | ID: mdl-36254196

ABSTRACT

Objectives: High-magnitude CD8+ T cell responses are associated with mild COVID-19 disease; however, the underlying characteristics that define CD8+ T cell-mediated protection are not well understood. The antigenic breadth and the immunodominance hierarchies of epitope-specific CD8+ T cells remain largely unexplored and are essential for the development of next-generation broad-protective vaccines. This study identified a broad spectrum of conserved SARS-CoV-2 CD8+ T cell epitopes and defined their respective immunodominance and phenotypic profiles following SARS-CoV-2 infection. Methods: CD8+ T cells from 51 convalescent COVID-19 donors were analysed for their ability to recognise 133 predicted and previously described SARS-CoV-2-derived peptides restricted by 11 common HLA class I allotypes using heterotetramer combinatorial coding, which combined with phenotypic markers allowed in-depth ex vivo profiling of CD8+ T cell responses at quantitative and phenotypic levels. Results: A comprehensive panel of 49 mostly conserved SARS-CoV-2-specific CD8+ T cell epitopes, including five newly identified low-magnitude epitopes, was established. We confirmed the immunodominance of HLA-A*01:01/ORF1ab1637-1646 and B*07:02/N105-113 and identified B*35:01/N325-333 as a third epitope with immunodominant features. The magnitude of subdominant epitope responses, including A*03:01/N361-369 and A*02:01/S269-277, depended on the donors' HLA-I context. All epitopes expressed prevalent memory phenotypes, with the highest memory frequencies in severe COVID-19 donors. Conclusion: SARS-CoV-2 infection induces a predominant CD8+ T memory response directed against a broad spectrum of conserved SARS-CoV-2 epitopes, which likely contributes to long-term protection against severe disease. The observed immunodominance hierarchy emphasises the importance of T cell epitopes derived from nonspike proteins to the overall protective and cross-reactive immune response, which could aid future vaccine strategies.

13.
Elife ; 112022 07 15.
Article in English | MEDLINE | ID: mdl-35838348

ABSTRACT

Background: Patients affected by different types of autoimmune diseases, including common conditions such as multiple sclerosis (MS) and rheumatoid arthritis (RA), are often treated with immunosuppressants to suppress disease activity. It is not fully understood how the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific humoral and cellular immunity induced by infection and/or upon vaccination is affected by immunosuppressants. Methods: The dynamics of cellular immune reactivation upon vaccination of SARS-CoV-2 experienced MS patients treated with the humanized anti-CD20 monoclonal antibody ocrelizumab (OCR) and RA patients treated with methotrexate (MTX) monotherapy were analyzed at great depth via high-dimensional flow cytometry of whole blood samples upon vaccination with the SARS-CoV-2 mRNA-1273 (Moderna) vaccine. Longitudinal B and T cell immune responses were compared to SARS-CoV-2 experienced healthy controls (HCs) before and 7 days after the first and second vaccination. Results: OCR-treated MS patients exhibit a preserved recall response of CD8+ T central memory cells following first vaccination compared to HCs and a similar CD4+ circulating T follicular helper 1 and T helper 1 dynamics, whereas humoral and B cell responses were strongly impaired resulting in absence of SARS-CoV-2-specific humoral immunity. MTX treatment significantly delayed antibody levels and B reactivation following the first vaccination, including sustained inhibition of overall reactivation marker dynamics of the responding CD4+ and CD8+ T cells. Conclusions: Together, these findings indicate that SARS-CoV-2 experienced MS-OCR patients may still benefit from vaccination by inducing a broad CD8+ T cell response which has been associated with milder disease outcome. The delayed vaccine-induced IgG kinetics in RA-MTX patients indicate an increased risk after the first vaccination, which might require additional shielding or alternative strategies such as treatment interruptions in vulnerable patients. Funding: This research project was supported by ZonMw (The Netherlands Organization for Health Research and Development, #10430072010007), the European Union's Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant agreement (#792532 and #860003), the European Commission (SUPPORT-E, #101015756) and by PPOC (#20_21 L2506), the NHMRC Leadership Investigator Grant (#1173871).


Subject(s)
Arthritis, Rheumatoid , COVID-19 , Multiple Sclerosis , Viral Vaccines , 2019-nCoV Vaccine mRNA-1273 , Antibodies, Viral , Arthritis, Rheumatoid/drug therapy , CD8-Positive T-Lymphocytes , COVID-19/prevention & control , Humans , Immunosuppressive Agents/therapeutic use , Multiple Sclerosis/drug therapy , SARS-CoV-2 , Vaccination , Viral Vaccines/genetics
14.
Immunity ; 55(7): 1299-1315.e4, 2022 07 12.
Article in English | MEDLINE | ID: mdl-35750048

ABSTRACT

As the establishment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific T cell memory in children remains largely unexplored, we recruited convalescent COVID-19 children and adults to define their circulating memory SARS-CoV-2-specific CD4+ and CD8+ T cells prior to vaccination. We analyzed epitope-specific T cells directly ex vivo using seven HLA class I and class II tetramers presenting SARS-CoV-2 epitopes, together with Spike-specific B cells. Unvaccinated children who seroconverted had comparable Spike-specific but lower ORF1a- and N-specific memory T cell responses compared with adults. This agreed with our TCR sequencing data showing reduced clonal expansion in children. A strong stem cell memory phenotype and common T cell receptor motifs were detected within tetramer-specific T cells in seroconverted children. Conversely, children who did not seroconvert had tetramer-specific T cells of predominantly naive phenotypes and diverse TCRαß repertoires. Our study demonstrates the generation of SARS-CoV-2-specific T cell memory with common TCRαß motifs in unvaccinated seroconverted children after their first virus encounter.


Subject(s)
COVID-19 , SARS-CoV-2 , CD4-Positive T-Lymphocytes , CD8-Positive T-Lymphocytes , Epitopes, T-Lymphocyte , Humans , Immunologic Memory , Receptors, Antigen, T-Cell , Receptors, Antigen, T-Cell, alpha-beta/genetics , Spike Glycoprotein, Coronavirus
15.
Front Immunol ; 13: 812393, 2022.
Article in English | MEDLINE | ID: mdl-35603215

ABSTRACT

CD8+ T cells are a pivotal part of the immune response to viruses, playing a key role in disease outcome and providing long-lasting immunity to conserved pathogen epitopes. Understanding CD8+ T cell immunity in humans is complex due to CD8+ T cell restriction by highly polymorphic Human Leukocyte Antigen (HLA) proteins, requiring T cell epitopes to be defined for different HLA allotypes across different ethnicities. Here we evaluate strategies that have been developed to facilitate epitope identification and study immunogenic T cell responses. We describe an immunopeptidomics approach to sequence HLA-bound peptides presented on virus-infected cells by liquid chromatography with tandem mass spectrometry (LC-MS/MS). Using antigen presenting cell lines that stably express the HLA alleles characteristic of Indigenous Australians, this approach has been successfully used to comprehensively identify influenza-specific CD8+ T cell epitopes restricted by HLA allotypes predominant in Indigenous Australians, including HLA-A*24:02 and HLA-A*11:01. This is an essential step in ensuring high vaccine coverage and efficacy in Indigenous populations globally, known to be at high risk from influenza disease and other respiratory infections.


Subject(s)
Influenza Vaccines , Influenza, Human , Australia , CD8-Positive T-Lymphocytes , Chromatography, Liquid , Epitopes, T-Lymphocyte , HLA Antigens , Histocompatibility Antigens Class I , Histocompatibility Antigens Class II , Humans , Tandem Mass Spectrometry
16.
Article in English | MEDLINE | ID: mdl-35523569

ABSTRACT

OBJECTIVES: To evaluate whether a third vaccination shows an added effect on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) T-cell responses in patients with multiple sclerosis treated with ocrelizumab or fingolimod. METHODS: This is a substudy of a prospective multicenter study on SARS-CoV-2 vaccination in patients with immune-mediated diseases. Patients with MS treated with ocrelizumab, fingolimod, and no disease-modifying therapies and healthy controls were included. The number of interferon (IFN)-γ secreting SARS-CoV-2-specific T cells at multiple time points before and after 3 SARS-CoV-2 vaccinations were evaluated. RESULTS: In ocrelizumab-treated patients (N = 24), IFN-γ-producing SARS-CoV-2-specific T-cell responses were induced after 2 vaccinations with median levels comparable to healthy controls (N = 12) and patients with MS without disease-modifying therapies (N = 10). A third vaccination in ocrelizumab-treated patients (N = 8) boosted T-cell responses that had declined after the second vaccination, but did not lead to higher overall T-cell responses as compared to immediately after a second vaccination. In fingolimod-treated patients, no SARS-CoV-2-specific T cells were detected after second (N = 12) and third (N = 9) vaccinations. DISCUSSION: In ocrelizumab-treated patients with MS, a third SARS-CoV-2 vaccination had no additive effect on the maximal T-cell response but did induce a boost response. In fingolimod-treated patients, no T-cell responses could be detected following both a second and third SARS-CoV-2 vaccination.


Subject(s)
COVID-19 Vaccines , COVID-19 , Immunity, Cellular , Multiple Sclerosis , T-Lymphocytes , Antibodies, Monoclonal, Humanized/therapeutic use , COVID-19/prevention & control , COVID-19 Vaccines/immunology , Fingolimod Hydrochloride/therapeutic use , Humans , Immunization, Secondary , Interferon-gamma , Multiple Sclerosis/drug therapy , Multiple Sclerosis/immunology , Prospective Studies , SARS-CoV-2 , T-Lymphocytes/immunology , Vaccination
17.
J Immunol ; 208(10): 2267-2271, 2022 05 15.
Article in English | MEDLINE | ID: mdl-35487578

ABSTRACT

Understanding the generation of immunity to SARS-CoV-2 in lymphoid tissues draining the site of infection has implications for immunity to SARS-CoV-2. We performed tonsil biopsies under local anesthesia in 19 subjects who had recovered from SARS-CoV-2 infection 24-225 d previously. The biopsies yielded >3 million cells for flow cytometric analysis in 17 subjects. Total and SARS-CoV-2 spike-specific germinal center B cells, and T follicular helper cells, were readily detectable in human tonsils early after SARS-CoV-2 infection, as assessed by flow cytometry. Responses were higher in samples within 2 mo of infection but still detectable in some subjects out to 7 mo following infection. We conclude the tonsils are a secondary lymphoid organ that develop germinal center responses to SARS-CoV-2 infection and could play a role in the long-term development of immunity.


Subject(s)
COVID-19 , Antibodies, Viral , Germinal Center , Humans , Palatine Tonsil , SARS-CoV-2 , T Follicular Helper Cells
18.
Proc Natl Acad Sci U S A ; 118(41)2021 10 12.
Article in English | MEDLINE | ID: mdl-34607957

ABSTRACT

Morbidity and mortality rates from seasonal and pandemic influenza occur disproportionately in high-risk groups, including Indigenous people globally. Although vaccination against influenza is recommended for those most at risk, studies on immune responses elicited by seasonal vaccines in Indigenous populations are largely missing, with no data available for Indigenous Australians and only one report published on antibody responses in Indigenous Canadians. We recruited 78 Indigenous and 84 non-Indigenous Australians vaccinated with the quadrivalent influenza vaccine into the Looking into InFluenza T cell immunity - Vaccination cohort study and collected blood to define baseline, early (day 7), and memory (day 28) immune responses. We performed in-depth analyses of T and B cell activation, formation of memory B cells, and antibody profiles and investigated host factors that could contribute to vaccine responses. We found activation profiles of circulating T follicular helper type-1 cells at the early stage correlated strongly with the total change in antibody titers induced by vaccination. Formation of influenza-specific hemagglutinin-binding memory B cells was significantly higher in seroconverters compared with nonseroconverters. In-depth antibody characterization revealed a reduction in immunoglobulin G3 before and after vaccination in the Indigenous Australian population, potentially linked to the increased frequency of the G3m21* allotype. Overall, our data provide evidence that Indigenous populations elicit robust, broad, and prototypical immune responses following immunization with seasonal inactivated influenza vaccines. Our work strongly supports the recommendation of influenza vaccination to protect Indigenous populations from severe seasonal influenza virus infections and their subsequent complications.


Subject(s)
Antibodies, Viral/blood , Indigenous Peoples/statistics & numerical data , Influenza Vaccines/immunology , Influenza, Human/prevention & control , Lymphocyte Activation/immunology , Australia , B-Lymphocytes/immunology , Humans , Immunoglobulin G/blood , Immunologic Memory/immunology , Influenza, Human/immunology , Influenza, Human/virology , Lymphocyte Count , Mass Vaccination , Risk , T Follicular Helper Cells/immunology , T-Lymphocytes/immunology
19.
Nat Commun ; 12(1): 2931, 2021 05 18.
Article in English | MEDLINE | ID: mdl-34006841

ABSTRACT

Indigenous people worldwide are at high risk of developing severe influenza disease. HLA-A*24:02 allele, highly prevalent in Indigenous populations, is associated with influenza-induced mortality, although the basis for this association is unclear. Here, we define CD8+ T-cell immune landscapes against influenza A (IAV) and B (IBV) viruses in HLA-A*24:02-expressing Indigenous and non-Indigenous individuals, human tissues, influenza-infected patients and HLA-A*24:02-transgenic mice. We identify immunodominant protective CD8+ T-cell epitopes, one towards IAV and six towards IBV, with A24/PB2550-558-specific CD8+ T cells being cross-reactive between IAV and IBV. Memory CD8+ T cells towards these specificities are present in blood (CD27+CD45RA- phenotype) and tissues (CD103+CD69+ phenotype) of healthy individuals, and effector CD27-CD45RA-PD-1+CD38+CD8+ T cells in IAV/IBV patients. Our data show influenza-specific CD8+ T-cell responses in Indigenous Australians, and advocate for T-cell-mediated vaccines that target and boost the breadth of IAV/IBV-specific CD8+ T cells to protect high-risk HLA-A*24:02-expressing Indigenous and non-Indigenous populations from severe influenza disease.


Subject(s)
CD8-Positive T-Lymphocytes/metabolism , Epitopes, T-Lymphocyte/genetics , HLA-A24 Antigen/genetics , Indigenous Peoples/genetics , Adult , Alleles , Amino Acid Sequence , Animals , Australia , CD8-Positive T-Lymphocytes/immunology , Cells, Cultured , Dogs , Epitopes, T-Lymphocyte/immunology , Female , Gene Frequency , HLA-A24 Antigen/immunology , Humans , Influenza A virus/immunology , Influenza A virus/physiology , Influenza B virus/immunology , Influenza B virus/physiology , Influenza, Human/immunology , Influenza, Human/virology , Male , Mice, Transgenic , Middle Aged
20.
Nat Commun ; 12(1): 2691, 2021 05 11.
Article in English | MEDLINE | ID: mdl-33976217

ABSTRACT

How innate and adaptive immune responses work in concert to resolve influenza disease is yet to be fully investigated in one single study. Here, we utilize longitudinal samples from patients hospitalized with acute influenza to understand these immune responses. We report the dynamics of 18 important immune parameters, related to clinical, genetic and virological factors, in influenza patients across different severity levels. Influenza disease correlates with increases in IL-6/IL-8/MIP-1α/ß cytokines and lower antibody responses. Robust activation of circulating T follicular helper cells correlates with peak antibody-secreting cells and influenza heamaglutinin-specific memory B-cell numbers, which phenotypically differs from vaccination-induced B-cell responses. Numbers of influenza-specific CD8+ or CD4+ T cells increase early in disease and retain an activated phenotype during patient recovery. We report the characterisation of immune cellular networks underlying recovery from influenza infection which are highly relevant to other infectious diseases.


Subject(s)
Antibody Formation/immunology , B-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Cytokines/immunology , Influenza, Human/immunology , T-Lymphocytes, Helper-Inducer/immunology , Cohort Studies , Cytokines/metabolism , Hospitalization/statistics & numerical data , Humans , Influenza A virus/classification , Influenza A virus/genetics , Influenza A virus/physiology , Influenza Vaccines/immunology , Influenza, Human/virology , Middle Aged , Phylogeny , Vaccination/methods
SELECTION OF CITATIONS
SEARCH DETAIL