Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Hum Genet ; 111(2): 393-402, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38272031

ABSTRACT

Sterile alpha motif domain containing 7 (SAMD7) is a component of the Polycomb repressive complex 1, which inhibits transcription of many genes, including those activated by the transcription factor Cone-Rod Homeobox (CRX). Here we report bi-allelic mutations in SAMD7 as a cause of autosomal-recessive macular dystrophy with or without cone dysfunction. Four of these mutations affect splicing, while another mutation is a missense variant that alters the repressive effect of SAMD7 on CRX-dependent promoter activity, as shown by in vitro assays. Immunostaining of human retinal sections revealed that SAMD7 is localized in the nuclei of both rods and cones, as well as in those of cells belonging to the inner nuclear layer. These results place SAMD7 as a gene crucial for human retinal function and demonstrate a significant difference in the role of SAMD7 between the human and the mouse retina.


Subject(s)
Eye Abnormalities , Macular Degeneration , Mice , Animals , Humans , Trans-Activators/genetics , Homeodomain Proteins/genetics , Retina , Mutation/genetics , Macular Degeneration/genetics
2.
Genome Med ; 16(1): 7, 2024 Jan 06.
Article in English | MEDLINE | ID: mdl-38184646

ABSTRACT

BACKGROUND: 5' untranslated regions (5'UTRs) are essential modulators of protein translation. Predicting the impact of 5'UTR variants is challenging and rarely performed in routine diagnostics. Here, we present a combined approach of a comprehensive prioritization strategy and functional assays to evaluate 5'UTR variation in two large cohorts of patients with inherited retinal diseases (IRDs). METHODS: We performed an isoform-level re-analysis of retinal RNA-seq data to identify the protein-coding transcripts of 378 IRD genes with highest expression in retina. We evaluated the coverage of their 5'UTRs by different whole exome sequencing (WES) kits. The selected 5'UTRs were analyzed in whole genome sequencing (WGS) and WES data from IRD sub-cohorts from the 100,000 Genomes Project (n = 2397 WGS) and an in-house database (n = 1682 WES), respectively. Identified variants were annotated for 5'UTR-relevant features and classified into seven categories based on their predicted functional consequence. We developed a variant prioritization strategy by integrating population frequency, specific criteria for each category, and family and phenotypic data. A selection of candidate variants underwent functional validation using diverse approaches. RESULTS: Isoform-level re-quantification of retinal gene expression revealed 76 IRD genes with a non-canonical retina-enriched isoform, of which 20 display a fully distinct 5'UTR compared to that of their canonical isoform. Depending on the probe design, 3-20% of IRD genes have 5'UTRs fully captured by WES. After analyzing these regions in both cohorts, we prioritized 11 (likely) pathogenic variants in 10 genes (ARL3, MERTK, NDP, NMNAT1, NPHP4, PAX6, PRPF31, PRPF4, RDH12, RD3), of which 7 were novel. Functional analyses further supported the pathogenicity of three variants. Mis-splicing was demonstrated for the PRPF31:c.-9+1G>T variant. The MERTK:c.-125G>A variant, overlapping a transcriptional start site, was shown to significantly reduce both luciferase mRNA levels and activity. The RDH12:c.-123C>T variant was found in cis with the hypomorphic RDH12:c.701G>A (p.Arg234His) variant in 11 patients. This 5'UTR variant, predicted to introduce an upstream open reading frame, was shown to result in reduced RDH12 protein but unaltered mRNA levels. CONCLUSIONS: This study demonstrates the importance of 5'UTR variants implicated in IRDs and provides a systematic approach for 5'UTR annotation and validation that is applicable to other inherited diseases.


Subject(s)
Nicotinamide-Nucleotide Adenylyltransferase , Retinal Diseases , Humans , 5' Untranslated Regions , c-Mer Tyrosine Kinase , Retina , Retinal Diseases/genetics , Protein Isoforms , Alcohol Oxidoreductases
3.
Front Med (Lausanne) ; 10: 1197984, 2023.
Article in English | MEDLINE | ID: mdl-37601772

ABSTRACT

Objective: To describe a cohort of paediatric patients who underwent unilateral or bilateral lens extractions at Ghent University hospital using the Dutch Ophthalmic Research Center (D.O.R.C.) ultra-short 27G vitrectomy system. Methods: Retrospective analysis of the medical and surgical records of all children that underwent lens extraction between September 2016 and September 2020 using the D.O.R.C. ultra-short 27G vitrectomy system. Results: Seventy-two eyes of 52 patients were included. The most important aetiologies in this study were of secondary (25.5%), developmental (13.7%), or genetic (13.7%) nature. No definitive cause could be established in more than a quarter of cases (27.5%) despite extensive work-up, them being deemed idiopathic. The remainder of cases (19.6%) was not assigned a final aetiologic designation at the time of the study due to contradicting or missing diagnostic data. This study could not identify any cataract cases related to infection or trauma. Surgical complications rate was 61.1% of which posterior capsule opacification was the most frequent with a rate of 25%. A significant short-term postoperative best-corrected visual acuity gain (≤ -0.2 LogMAR) was observed in 60.5% of eyes for which usable acuity data were available (n = 38). Conclusion: Many different instruments and techniques have been described and used in the context of paediatric lens extractions, each with its advantages and disadvantages. This study illustrates that an ultra-short 27G vitrectomy system can be used to perform paediatric lens extractions with good surgical outcomes. Further studies and comparative trials are needed to ascertain this further.

4.
Ophthalmic Genet ; 44(2): 152-162, 2023 04.
Article in English | MEDLINE | ID: mdl-36469668

ABSTRACT

BACKGROUND: Congenital Stationary Night Blindness (CSNB) constitutes a group of non-progressive retinal disorders characterized by disturbances in scotopic vision and/or by a delay in adaptation to darkness, as well as by low visual acuity, myopia, nystagmus, and strabismus. Color vision and fundus appearance tend to be normal. To date, several CACNA1F gene variants have been linked to a CSNB phenotype but only few reports have focused on the optic nerve in this disease. MATERIALS AND METHODS: Twelve patients underwent standard ophthalmological and genetic evaluation including spectral domain optical coherence tomography (SD-OCT), full-field electroretinography (ffERG), kinetic perimetry, fundus photography, magnetic resonance imaging (MRI), and next-generation sequencing (NGS). Bilateral thinning of the peripapillary nerve fiber layer (pRNFL) and the ganglion cell complex (GCC) supported involvement of the optic nerves. MRI, when available, was assessed for gross intracranial optic pathway abnormalities. RESULTS: All patients were shown to carry pathogenic variants in the CACNA1F gene, and all showed signs of optic nerve involvement. All patients showed a certain degree of myopic refractive error. Low average pRNFL thickness was evident in all patients. In three of them, pRNFL thickness was evaluated longitudinally and was proven to be stable over time. MRI imaging was unremarkable in all cases. CONCLUSION: Our data support the hypothesis that CACNA1F could be related to early-onset or congenital optic nerve involvement without any signs of a progressive optic neuropathy. Even though additional data from larger cohorts and longer follow-up periods are needed to further support and confirm our findings, there is a clear significance to our findings in the preparation for future CACNA1F gene therapy trials.


Subject(s)
Myopia , Night Blindness , Retinal Diseases , Humans , Night Blindness/diagnosis , Night Blindness/genetics , Myopia/diagnosis , Myopia/genetics , Retinal Diseases/genetics , Optic Nerve , Tomography, Optical Coherence , Calcium Channels, L-Type/genetics
5.
Surg Innov ; 26(4): 456-463, 2019 Aug.
Article in English | MEDLINE | ID: mdl-30667302

ABSTRACT

Objective. The introduction of advanced endoscopic systems, such as the Storz Image1S and the Olympus Endoeye, heralds a new era of 3-dimensional (3D) visualization. The aim of this report is to provide a comprehensive overview of the neurophysiology of 3D view, its relevance in videoscopy, and to quantify the benefit of the new 3D technologies for both rigid and articulated instruments. Method. Sixteen medical students without any laparoscopic experience were trained each for a total of 27 hours. Proficiency scores were determined for rigid and articulated instruments under 2D and 3D visualization conditions. Results. A reduction in execution time of 14%, 28%, and 36% was seen for the rigid instruments, the da Vinci, and Steerable instruments, respectively. A reduction in errors of 84%, 92%, and 87% was seen for the rigid instruments, the da Vinci, and Steerable instruments, respectively. Conclusion. 3D visualization greatly augments endoscopic procedures. The advanced endoscopic systems employed in the recent study caused no visual fatigue or discomfort. The benefit of 3D was most distinct with articulated instruments.


Subject(s)
Asthenopia/etiology , Education, Medical, Undergraduate/methods , Imaging, Three-Dimensional/instrumentation , Laparoscopy/instrumentation , Medical Errors/statistics & numerical data , Surgical Instruments , Belgium , Clinical Competence , Educational Measurement , Equipment Design , Female , Humans , Male , Operative Time , Students, Medical , Task Performance and Analysis , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...