Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters










Publication year range
1.
J Microsc ; 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38963095

ABSTRACT

Flow or collective movement is a frequently observed phenomenon for many cellular components including the cytoskeletal proteins actin and myosin. To study protein flow in living cells, we and others have previously used spatiotemporal image correlation spectroscopy (STICS) analysis on fluorescence microscopy image time series. Yet, in cells, multiple protein flows often occur simultaneously on different scales resulting in superimposed fluorescence intensity fluctuations that are challenging to separate using STICS. Here, we exploited the characteristic that distinct protein flows often occur at different spatial scales present in the image series to disentangle superimposed protein flow dynamics. We employed a newly developed and an established spatial filtering algorithm to alternatively accentuate or attenuate local image intensity heterogeneity across different spatial scales. Subsequently, we analysed the spatially filtered time series with STICS, allowing the quantification of two distinct superimposed flows within the image time series. As a proof of principle of our analysis approach, we used simulated fluorescence intensity fluctuations as well as time series of nonmuscle myosin II in endothelial cells and actin-based podosomes in dendritic cells and revealed simultaneously occurring contiguous and noncontiguous flow dynamics in each of these systems. Altogether, this work extends the application of STICS for the quantification of multiple protein flow dynamics in complex biological systems including the actomyosin cytoskeleton.

2.
Eur J Immunol ; 54(6): e2350891, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38509863

ABSTRACT

Metastatic colorectal cancer (CRC) is highly resistant to therapy and prone to recur. The tumor-induced local and systemic immunosuppression allows cancer cells to evade immunosurveillance, facilitating their proliferation and dissemination. Dendritic cells (DCs) are required for the detection, processing, and presentation of tumor antigens, and subsequently for the activation of antigen-specific T cells to orchestrate an effective antitumor response. Notably, successful tumors have evolved mechanisms to disrupt and impair DC functions, underlining the key role of tumor-induced DC dysfunction in promoting tumor growth, metastasis initiation, and treatment resistance. Conventional DC type 2 (cDC2) are highly prevalent in tumors and have been shown to present high phenotypic and functional plasticity in response to tumor-released environmental cues. This plasticity reverberates on both the development of antitumor responses and on the efficacy of immunotherapies in cancer patients. Uncovering the processes, mechanisms, and mediators by which CRC shapes and disrupts cDC2 functions is crucial to restoring their full antitumor potential. In this study, we use our recently developed 3D DC-tumor co-culture system to investigate how patient-derived primary and metastatic CRC organoids modulate cDC2 phenotype and function. We first demonstrate that our collagen-based system displays extensive interaction between cDC2 and tumor organoids. Interestingly, we show that tumor-corrupted cDC2 shift toward a CD14+ population with defective expression of maturation markers, an intermediate phenotype positioned between cDC2 and monocytes, and impaired T-cell activating abilities. This phenotype aligns with the newly defined DC3 (CD14+ CD1c+ CD163+) subset. Remarkably, a comparable population was found to be present in tumor lesions and enriched in the peripheral blood of metastatic CRC patients. Moreover, using EP2 and EP4 receptor antagonists and an anti-IL-6 neutralizing antibody, we determined that the observed phenotype shift is partially mediated by PGE2 and IL-6. Importantly, our system holds promise as a platform for testing therapies aimed at preventing or mitigating tumor-induced DC dysfunction. Overall, our study offers novel and relevant insights into cDC2 (dys)function in CRC that hold relevance for the design of therapeutic approaches.


Subject(s)
Colorectal Neoplasms , Dendritic Cells , Dinoprostone , Interleukin-6 , Organoids , Colorectal Neoplasms/immunology , Colorectal Neoplasms/pathology , Colorectal Neoplasms/metabolism , Humans , Dendritic Cells/immunology , Dendritic Cells/metabolism , Organoids/immunology , Organoids/metabolism , Dinoprostone/metabolism , Interleukin-6/metabolism , Interleukin-6/immunology , Coculture Techniques , Phenotype , Cell Plasticity
3.
PLoS Biol ; 22(3): e3002551, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38466773

ABSTRACT

Mammals have 6 highly conserved actin isoforms with nonredundant biological functions. The molecular basis of isoform specificity, however, remains elusive due to a lack of tools. Here, we describe the development of IntAct, an internal tagging strategy to study actin isoforms in fixed and living cells. We identified a residue pair in ß-actin that permits tag integration and used knock-in cell lines to demonstrate that IntAct ß-actin expression and filament incorporation is indistinguishable from wild type. Furthermore, IntAct ß-actin remains associated with common actin-binding proteins (ABPs) and can be targeted in living cells. We demonstrate the usability of IntAct for actin isoform investigations by showing that actin isoform-specific distribution is maintained in human cells. Lastly, we observed a variant-dependent incorporation of tagged actin variants into yeast actin patches, cables, and cytokinetic rings demonstrating cross species applicability. Together, our data indicate that IntAct is a versatile tool to study actin isoform localization, dynamics, and molecular interactions.


Subject(s)
Actins , Microfilament Proteins , Animals , Humans , Actins/genetics , Actins/metabolism , Microfilament Proteins/metabolism , Actin Cytoskeleton/metabolism , Protein Isoforms/genetics , Protein Isoforms/metabolism , Cytoskeleton/metabolism , Saccharomyces cerevisiae/metabolism , Mammals/metabolism
4.
Curr Opin Cell Biol ; 86: 102311, 2024 02.
Article in English | MEDLINE | ID: mdl-38176349

ABSTRACT

Tissue-resident myeloid cells sense and transduce mechanical signals such as stiffness, stretch and compression. In the past two years, our understanding of the mechanosensitive signalling pathways in myeloid cells has significantly expanded. Moreover, it is increasingly clear which mechanical signals induce myeloid cells towards a pro- or anti-inflammatory phenotype. This is especially relevant in the context of altered matrix mechanics in immune-related pathologies or in the response to implanted biomaterials. A detailed understanding of myeloid cell mechanosensing may eventually lead to more effective cell-based immunotherapies for cancer, the development of mechanically inspired therapies to target fibrosis, and the engineering of safer implants. This review covers these recent advances in the emerging field of mechanoimmunology of myeloid cells.


Subject(s)
Neoplasms , Signal Transduction , Humans , Neoplasms/therapy , Biophysics , Myeloid Cells , Mechanotransduction, Cellular/physiology
5.
Eur J Immunol ; 54(3): e2350770, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38088451

ABSTRACT

Dendritic cells (DCs) shape adaptive immunity in response to environmental cues such as cytokines or lipid mediators, including prostaglandin E2 (PGE2). In cancer, tumors are known to establish an enriched PGE2 microenvironment. Tumor-derived PGE2 primes regulatory features across immune cells, including DCs, facilitating tumor progression. PGE2 shapes DC function by providing signaling via its two so-called E-prostanoid receptors (EPs) EP2 and EP4. Although studies with monocyte-derived DCs have shown the importance of PGE2 signaling, the role of PGE2-EP2/EP4 on conventional DCs type 2 (cDC2s), is still poorly defined. In this study, we investigated the function of EP2 and EP4 using specific EP antagonists on human cDC2s. Our results show that EP2 and EP4 exhibit different functions in cDC2s, with EP4 modulating the upregulation of activation markers (CD80, CD86, CD83, MHC class II) and the production of IL-10 and IL-23. Furthermore, PGE2-EP4 boosts CCR type 7-based migration as well as a higher T-cell expansion capacity, characterized by the enrichment of suppressive rather than pro-inflammatory T-cell populations. Our findings are relevant to further understanding the role of EP receptors in cDC2s, underscoring the benefit of targeting the PGE2-EP2/4 axis for therapeutic purposes in diseases such as cancer.


Subject(s)
Dinoprostone , Neoplasms , Humans , T-Lymphocytes , Receptors, Prostaglandin E, EP2 Subtype , Receptors, Prostaglandin E, EP4 Subtype , Tumor Microenvironment
6.
J Immunother Cancer ; 11(8)2023 08.
Article in English | MEDLINE | ID: mdl-37612044

ABSTRACT

BACKGROUND: Adjuvants are key for effective vaccination against cancer and chronic infectious diseases. Saponin-based adjuvants (SBAs) are unique among adjuvants in their ability to induce robust cell-mediated immune responses in addition to antibody responses. Recent preclinical studies revealed that SBAs induced cross-presentation and lipid bodies in otherwise poorly cross-presenting CD11b+ murine dendritic cells (DCs). METHOD: Here, we investigated the response of human DC subsets to SBAs with RNA sequencing and pathway analyses, lipid body induction visualized by laser scanning microscopy, antigen translocation to the cytosol, and antigen cross-presentation to CD8+ T cells. RESULTS: RNA sequencing of SBA-treated conventional type 1 DC (cDC1) and type 2 DC (cDC2) subsets uncovered that SBAs upregulated lipid-related pathways in CD11c+ CD1c+ cDC2s, especially in the CD5- CD163+ CD14+ cDC2 subset. Moreover, SBAs induced lipid bodies and enhanced endosomal antigen translocation into the cytosol in this particular cDC2 subset. Finally, SBAs enhanced cross-presentation only in cDC2s, which requires the CD163+ CD14+ cDC2 subset. CONCLUSIONS: These data thus identify the CD163+ CD14+ cDC2 subset as the main SBA-responsive DC subset in humans and imply new strategies to optimize the application of saponin-based adjuvants in a potent cancer vaccine.


Subject(s)
Cross-Priming , Saponins , Humans , Animals , Mice , CD8-Positive T-Lymphocytes , Adjuvants, Immunologic/pharmacology , Dendritic Cells , Saponins/pharmacology
7.
Nat Commun ; 14(1): 2902, 2023 05 22.
Article in English | MEDLINE | ID: mdl-37217555

ABSTRACT

Immune cells, such as macrophages and dendritic cells, can utilize podosomes, mechanosensitive actin-rich protrusions, to generate forces, migrate, and patrol for foreign antigens. Individual podosomes probe their microenvironment through periodic protrusion and retraction cycles (height oscillations), while oscillations of multiple podosomes in a cluster are coordinated in a wave-like fashion. However, the mechanisms governing both the individual oscillations and the collective wave-like dynamics remain unclear. Here, by integrating actin polymerization, myosin contractility, actin diffusion, and mechanosensitive signaling, we develop a chemo-mechanical model for podosome dynamics in clusters. Our model reveals that podosomes show oscillatory growth when actin polymerization-driven protrusion and signaling-associated myosin contraction occur at similar rates, while the diffusion of actin monomers drives wave-like coordination of podosome oscillations. Our theoretical predictions are validated by different pharmacological treatments and the impact of microenvironment stiffness on chemo-mechanical waves. Our proposed framework can shed light on the role of podosomes in immune cell mechanosensing within the context of wound healing and cancer immunotherapy.


Subject(s)
Podosomes , Podosomes/metabolism , Actins/metabolism , Macrophages/metabolism
8.
Front Immunol ; 14: 1105244, 2023.
Article in English | MEDLINE | ID: mdl-36761758

ABSTRACT

Colorectal cancer (CRC) remains one of the most aggressive and lethal cancers, with metastasis accounting for most deaths. As such, there is an unmet need for improved therapies for metastatic CRC (mCRC). Currently, the research focus is shifting towards the reciprocal interactions within the tumor microenvironment (TME), which prevent tumor clearance by the immune system. Dendritic cells (DCs) play a key role in the initiation and amplification of anti-tumor immune responses and in driving the clinical success of immunotherapies. Dissecting the interactions between DCs and CRC cells may open doors to identifying key mediators in tumor progression, and possible therapeutic targets. This requires representative, robust and versatile models and tools. Currently, there is a shortage of such in vitro systems to model the CRC TME and its tumor-immune cell interactions. Here we develop and establish a dynamic organotypic 3D co-culture system to recapitulate and untangle the interactions between DCs and patient-derived mCRC tumor organoids. To our knowledge, this is the first study investigating human DCs in co-culture with tumor organoids in a 3D, organotypic setting. This system reveals how mCRC organoids modulate and shape monocyte-derived DCs (MoDCs) behavior, phenotype, and function, within a collagen matrix, using techniques such as brightfield and fluorescence microscopy, flow cytometry, and fluorescence-activated cell sorting. Our 3D co-culture model shows high viability and extensive interaction between DCs and tumor organoids, and its structure resembles patient tissue sections. Furthermore, it is possible to retrieve DCs from the co-cultures and characterize their phenotypic and functional profile. In our study, the expression of activation markers in both mature and immature DCs and their ability to activate T cells were impacted by co-culture with tumor organoids. In the future, this direct co-culture platform can be adapted and exploited to study the CRC-DC interplay in more detail, enabling novel and broader insights into CRC-driven DC (dys)function.


Subject(s)
Colonic Neoplasms , Rectal Neoplasms , Humans , Coculture Techniques , Colonic Neoplasms/pathology , Rectal Neoplasms/pathology , Dendritic Cells , Organoids , Phenotype , Tumor Microenvironment
9.
FEBS Lett ; 596(19): 2486-2496, 2022 10.
Article in English | MEDLINE | ID: mdl-35674424

ABSTRACT

Correlative light and electron microscopy (CLEM) is a powerful imaging approach that allows the direct correlation of information obtained on a light and an electron microscope. There is a growing interest in the application of CLEM in biology, mainly attributable to technical advances in field of fluorescence microscopy in the past two decades. In this review, we summarize the important developments in CLEM for biological applications, focusing on the combination of fluorescence microscopy and electron microscopy. We first provide a brief overview of the early days of fluorescence CLEM usage starting with the initial rise in the late 1970s and the subsequent optimization of CLEM workflows during the following two decades. Next, we describe how the engineering of fluorescent proteins and the development of super-resolution fluorescence microscopy have significantly renewed the interest in CLEM resulting in the present application of fluorescence CLEM in many different areas of cellular and molecular biology. Lastly, we present the promises and challenges for the future of fluorescence CLEM discussing novel workflows, probe development and quantification possibilities.


Subject(s)
Biology , Electrons , Microscopy, Electron , Microscopy, Fluorescence/methods
10.
J Cell Sci ; 133(8)2020 04 28.
Article in English | MEDLINE | ID: mdl-32152182

ABSTRACT

Podosomes are actin-based adhesion and invasion structures in a variety of cell types, with podosome-forming cells displaying up to several hundreds of these structures. Podosome number, distribution and composition can be affected by experimental treatments or during regular turnover, necessitating a tool that is able to detect even subtle differences in podosomal properties. Here, we present a Fiji-based macro code termed 'Poji' ('podosome analysis by Fiji'), which serves as an easy-to-use tool to characterize a variety of cellular and podosomal parameters, including area, fluorescence intensity, relative enrichment of associated proteins and radial podosome intensity profiles. This tool should be useful to gain more detailed insight into the regulation, architecture and functions of podosomes. Moreover, we show that Poji is easily adaptable for the analysis of invadopodia and associated extracellular matrix degradation, and likely also of other micron-size punctate structures. This article describes the workflow of the Poji macro, presents several examples of its applications, and also points out limitations, as well as respective solutions, and adaptable features to streamline the analysis.This article has an associated First Person interview with the first author of the paper.


Subject(s)
Podosomes , Software , Actins/genetics
11.
Front Immunol ; 11: 613286, 2020.
Article in English | MEDLINE | ID: mdl-33643295

ABSTRACT

Prostaglandin E2 (PGE2) is a lipid mediator that modulates the function of myeloid immune cells such as macrophages and dendritic cells (DCs) through the activation of the G protein-coupled receptors EP2 and EP4. While both EP2 and EP4 signaling leads to an elevation of intracellular cyclic adenosine monophosphate (cAMP) levels through the stimulating Gαs protein, EP4 also couples to the inhibitory Gαi protein to decrease the production of cAMP. The receptor-specific contributions to downstream immune modulatory functions are still poorly defined. Here, we employed quantitative imaging methods to characterize the early EP2 and EP4 signaling events in myeloid cells and their contribution to the dissolution of adhesion structures called podosomes, which is a first and essential step in DC maturation. We first show that podosome loss in DCs is primarily mediated by EP4. Next, we demonstrate that EP2 and EP4 signaling leads to distinct cAMP production profiles, with EP4 inducing a transient cAMP response and EP2 inducing a sustained cAMP response only at high PGE2 levels. We further find that simultaneous EP2 and EP4 stimulation attenuates cAMP production, suggesting a reciprocal control of EP2 and EP4 signaling. Finally, we demonstrate that efficient signaling of both EP2 and EP4 relies on an intact microtubule network. Together, these results enhance our understanding of early EP2 and EP4 signaling in myeloid cells. Considering that modulation of PGE2 signaling is regarded as an important therapeutic possibility in anti-tumor immunotherapy, our findings may facilitate the development of efficient and specific immune modulators of PGE2 receptors.


Subject(s)
Microtubules/metabolism , Receptors, Prostaglandin E, EP2 Subtype/metabolism , Receptors, Prostaglandin E, EP4 Subtype/metabolism , Signal Transduction/physiology , Animals , Cell Line , Cyclic AMP/metabolism , Dendritic Cells/metabolism , Humans , Mice , Myeloid Cells/metabolism , RAW 264.7 Cells
12.
iScience ; 22: 240-255, 2019 Dec 20.
Article in English | MEDLINE | ID: mdl-31786520

ABSTRACT

Endogenous extracellular Galectins constitute a novel mechanism of membrane protein organization at the cell surface. Although Galectins are also highly expressed intracellularly, their cytosolic functions are poorly understood. Here, we investigated the role of Galectin-9 in dendritic cell (DC) surface organization and function. By combining functional, super-resolution and atomic force microscopy experiments to analyze membrane stiffness, we identified intracellular Galectin-9 to be indispensable for plasma membrane integrity and structure in DCs. Galectin-9 knockdown studies revealed intracellular Galectin-9 to directly control cortical membrane structure by modulating Rac1 activity, providing the underlying mechanism of Galectin-9-dependent actin cytoskeleton organization. Consequent to its role in maintaining plasma membrane structure, phagocytosis studies revealed that Galectin-9 was essential for C-type-lectin receptor-mediated pathogen uptake by DCs. This was confirmed by the impaired phagocytic capacity of Galectin-9-null murine DCs. Together, this study demonstrates a novel role for intracellular Galectin-9 in modulating DC function, which may be evolutionarily conserved.

13.
J Cell Sci ; 132(24)2019 12 13.
Article in English | MEDLINE | ID: mdl-31836688

ABSTRACT

Podosomes are dynamic adhesion structures formed constitutively by macrophages, dendritic cells and osteoclasts and transiently in a wide variety of cells, such as endothelial cells and megakaryocytes. They mediate numerous functions, including cell-matrix adhesion, extracellular matrix degradation, mechanosensing and cell migration. Podosomes present as micron-sized F-actin cores surrounded by an adhesive ring of integrins and integrin-actin linkers, such as talin and vinculin. In this Review, we highlight recent research that has considerably advanced our understanding of the complex architecture-function relationship of podosomes by demonstrating that the podosome ring actually consists of discontinuous nano-clusters and that the actin network in between podosomes comprises two subsets of unbranched actin filaments, lateral and dorsal podosome-connecting filaments. These lateral and dorsal podosome-connecting filaments connect the core and ring of individual podosomes and adjacent podosomes, respectively. We also highlight recent insights into the podosome cap as a novel regulatory module of actomyosin-based contractility. We propose that these newly identified features are instrumental for the ability of podosomes to generate protrusion forces and to mechanically probe their environment. Furthermore, these new results point to an increasing complexity of podosome architecture and have led to our current view of podosomes as autonomous force generators that drive cell migration.


Subject(s)
Podosomes/metabolism , Animals , Cell Movement/physiology , Endothelial Cells/metabolism , Humans , Megakaryocytes/metabolism , Myosin Type II/metabolism
14.
Nat Commun ; 10(1): 5171, 2019 11 15.
Article in English | MEDLINE | ID: mdl-31729386

ABSTRACT

Basement membrane transmigration during embryonal development, tissue homeostasis and tumor invasion relies on invadosomes, a collective term for invadopodia and podosomes. An adequate structural framework for this process is still missing. Here, we reveal the modular actin nano-architecture that enables podosome protrusion and mechanosensing. The podosome protrusive core contains a central branched actin module encased by a linear actin module, each harboring specific actin interactors and actin isoforms. From the core, two actin modules radiate: ventral filaments bound by vinculin and connected to the plasma membrane and dorsal interpodosomal filaments crosslinked by myosin IIA. On stiff substrates, the actin modules mediate long-range substrate exploration, associated with degradative behavior. On compliant substrates, the vinculin-bound ventral actin filaments shorten, resulting in short-range connectivity and a focally protrusive, non-degradative state. Our findings redefine podosome nanoscale architecture and reveal a paradigm for how actin modularity drives invadosome mechanosensing in cells that breach tissue boundaries.


Subject(s)
Actins/chemistry , Actins/metabolism , Podosomes/metabolism , Actins/genetics , Animals , Cell Adhesion , Cell Membrane/genetics , Cell Membrane/metabolism , Cell Movement , Cells, Cultured , Dendritic Cells/chemistry , Dendritic Cells/cytology , Dendritic Cells/metabolism , Humans , Mechanotransduction, Cellular , Mice , Podosomes/chemistry , Podosomes/genetics
15.
Cancers (Basel) ; 11(10)2019 Sep 29.
Article in English | MEDLINE | ID: mdl-31569498

ABSTRACT

Tumor metastasis is the endpoint of tumor progression and depends on the ability of tumor cells to locally invade tissue, transit through the bloodstream and ultimately to colonize secondary organs at distant sites. P120 catenin (P120) has been implicated as an important regulator of metastatic dissemination because of its roles in cell-cell junctional stability, cytoskeletal dynamics, growth and survival. However, conflicting roles for P120 in different tumor models and steps of metastasis have been reported, and the understanding of P120 functions is confounded by the differential expression of P120 isoforms, which differ in N-terminal length, tissue localization and, likely, function. Here, we used in silico exon expression analyses, in vitro invasion assays and both RT-PCR and immunofluorescence of human tumors. We show that alternative exon usage favors expression of short isoform P120-3 in 1098 breast tumors and correlates with poor prognosis. P120-3 is upregulated at the invasive front of breast cancer cells migrating as collective groups in vitro. Furthermore, we demonstrate in histological sections of 54 human breast cancer patients that P120-3 expression is maintained throughout the metastatic cascade, whereas P120-1 is differentially expressed and diminished during invasion and in metastases. These data suggest specific regulation and functions of P120-3 in breast cancer invasion and metastasis.

16.
Sci Rep ; 9(1): 3556, 2019 03 05.
Article in English | MEDLINE | ID: mdl-30837487

ABSTRACT

Local membrane phospholipid enrichment serves as docking platform for signaling proteins involved in many processes including cell adhesion and migration. Tissue-resident dendritic cells (DCs) assemble actomyosin-based structures called podosomes, which mediate adhesion and degradation of extracellular matrix for migration and antigen sampling. Recent evidence suggested the involvement of phospholipase D (PLD) and its product phosphatidic acid (PA) in podosome formation, but the spatiotemporal control of this process is poorly characterized. Here we determined the role of PLD1 and PLD2 isoforms in regulating podosome formation and dynamics in human primary DCs by combining PLD pharmacological inhibition with a fluorescent PA sensor and fluorescence microscopy. We found that ongoing PLD2 activity is required for the maintenance of podosomes, whereas both PLD1 and PLD2 control the early stages of podosome assembly. Furthermore, we captured the formation of PA microdomains accumulating at the membrane cytoplasmic leaflet of living DCs, in dynamic coordination with nascent podosome actin cores. Finally, we show that both PLD1 and PLD2 activity are important for podosome-mediated matrix degradation. Our results provide novel insight into the isoform-specific spatiotemporal regulation of PLD activity and further our understanding of the role of cell membrane phospholipids in controlling localized actin polymerization and cell protrusion.


Subject(s)
Membrane Microdomains/metabolism , Phosphatidic Acids/metabolism , Phospholipase D/metabolism , Podosomes/metabolism , Signal Transduction , Actins/metabolism , Dendritic Cells/cytology , Humans
17.
Sci Rep ; 8(1): 17967, 2018 12 19.
Article in English | MEDLINE | ID: mdl-30568231

ABSTRACT

Cells respond to the mechanics of their environment. Mechanical cues include extracellular matrix (ECM) stiffness and deformation, which are primarily sensed through integrin-mediated adhesions. We investigated the impact of ECM deformation on cellular forces, measuring the time-evolution of traction forces of isolated mouse fibroblasts in response to stretch and release. Stretch triggered a marked increase of traction stresses and apparent stiffness. Expression of the focal adhesion protein vinculin not only increased baseline traction forces, but also increased dissipation of mechanical energy, which was correlated with the cells' failure to recover baseline traction forces after release of stretch.


Subject(s)
Cell Adhesion , Extracellular Matrix/metabolism , Fibroblasts/cytology , Fibroblasts/metabolism , Vinculin/metabolism , Animals , Biomarkers , Cell Shape , Cells, Cultured , Fibroblasts/ultrastructure , Fluorescent Antibody Technique , Focal Adhesions , Gene Knockout Techniques , Mechanical Phenomena , Mice , Vinculin/genetics
18.
Front Immunol ; 9: 1908, 2018.
Article in English | MEDLINE | ID: mdl-30186284

ABSTRACT

Podosomes are multimolecular cytoskeletal structures that coordinate the migration of tissue-resident dendritic cells (DCs). They consist of a protrusive actin-rich core and an adhesive integrin-rich ring that contains adaptor proteins such as vinculin and zyxin. Individual podosomes are typically interconnected by a dense network of actin filaments giving rise to large podosome clusters. The actin density in podosome clusters complicates the analysis of podosomes by light microscopy alone. Here, we present an optimized procedure for performing super-resolution correlative light and electron microscopy (SR-CLEM) to study the organization of multiple proteins with respect to actin in podosome clusters at the ventral plasma membrane of DCs. We demonstrate that our procedure is suited to correlate at least three colors in super-resolution Airyscan microscopy with scanning electron microscopy (SEM). Using this procedure, we first reveal an intriguing complexity in the organization of ventral and radiating actin filaments in clusters formed by DCs which was not properly detected before by light microscopy alone. Next, we demonstrate a differential organization of vinculin and zyxin with respect to the actin filaments at podosomes. While vinculin mostly resides at sites where the actin filaments connect to the cell membrane, zyxin is primarily associated with filaments close to and on top of the core. Finally, we reveal a novel actin-based structure with SEM that connects closely associated podosome cores and which may be important for podosome topography sensing. Interestingly, these interpodosomal connections, in contrast to the radiating and ventral actin filaments appear to be insensitive to inhibition of actin polymerization suggesting that these pools of actin are not dynamically coupled. Together, our work demonstrates the power of correlating different imaging modalities for studying multimolecular cellular structures and could potentially be further exploited to study processes at the ventral plasma membrane of immune cells such as clathrin-mediated endocytosis or immune synapse formation.


Subject(s)
Dendritic Cells/metabolism , Dendritic Cells/ultrastructure , Podosomes/metabolism , Podosomes/ultrastructure , Actins/chemistry , Actins/metabolism , Biomarkers , Humans , Microscopy , Microscopy, Electron , Protein Binding , Protein Multimerization , Workflow
19.
Sci Rep ; 7(1): 17511, 2017 12 13.
Article in English | MEDLINE | ID: mdl-29235514

ABSTRACT

Dendritic cells (DCs) are specialized immune cells that scan peripheral tissues for foreign material or aberrant cells and, upon recognition of such danger signals, travel to lymph nodes to activate T cells and evoke an immune response. For this, DCs travel large distances through the body, encountering a variety of microenvironments with different mechanical properties such as tissue stiffness. While immune-related pathological conditions such as fibrosis or cancer are associated with tissue stiffening, the role of tissue stiffness in regulating key functions of DCs has not been studied yet. Here, we investigated the effect of substrate stiffness on the phenotype and function of DCs by conditioning DCs on polyacrylamide substrates of 2, 12 and 50 kPa. Interestingly, we found that C-type lectin expression on immature DCs (iDCs) is regulated by substrate stiffness, resulting in differential antigen internalization. Furthermore, we show that substrate stiffness affects ß2 integrin expression and podosome formation by iDCs. Finally, we demonstrate that substrate stiffness influences CD83 and CCR7 expression on mature DCs, the latter leading to altered chemokine-directed migration. Together, our results indicate that DC phenotype and function are affected by substrate stiffness, suggesting that tissue stiffness is an important determinant for modulating immune responses.


Subject(s)
Dendritic Cells/physiology , Tissue Scaffolds , Acrylic Resins , Antigens, CD/metabolism , CD18 Antigens/metabolism , Cell Adhesion/physiology , Cell Movement/physiology , Cell Survival , Cells, Cultured , Coculture Techniques , Elasticity , Humans , Immunoglobulins/metabolism , Lectins/metabolism , Membrane Glycoproteins/metabolism , Podosomes/metabolism , Receptors, CCR7/metabolism , T-Lymphocytes/physiology , CD83 Antigen
20.
Results Probl Cell Differ ; 62: 209-242, 2017.
Article in English | MEDLINE | ID: mdl-28455711

ABSTRACT

Tissue homeostasis is not only controlled by biochemical signals but also through mechanical forces that act on cells. Yet, while it has long been known that biochemical signals have profound effects on cell biology, the importance of mechanical forces has only been recognized much more recently. The types of mechanical stress that cells experience include stretch, compression, and shear stress, which are mainly induced by the extracellular matrix, cell-cell contacts, and fluid flow. Importantly, macroscale tissue deformation through stretch or compression also affects cellular function.Immune cells such as macrophages and dendritic cells are present in almost all peripheral tissues, and monocytes populate the vasculature throughout the body. These cells are unique in the sense that they are subject to a large variety of different mechanical environments, and it is therefore not surprising that key immune effector functions are altered by mechanical stimuli. In this chapter, we describe the different types of mechanical signals that cells encounter within the body and review the current knowledge on the role of mechanical signals in regulating macrophage, monocyte, and dendritic cell function.


Subject(s)
Dendritic Cells/immunology , Macrophages/immunology , Mechanotransduction, Cellular/immunology , Animals , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...