Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 10(1): 11528, 2020 07 13.
Article in English | MEDLINE | ID: mdl-32661318

ABSTRACT

The human-mediated spread of exotic and invasive species often leads to unintentional and harmful consequences. Invasive wild pigs (Sus scrofa) are one such species that have been repeatedly translocated throughout the United States and cause extensive damage to natural ecosystems, threatened and endangered species, agricultural resources, and private lands. In 2005, a newly established population of wild pigs was confirmed in Fulton County, Illinois, U.S. In 2011, a state-wide wild pig damage management program involving federal, state, and local government authorities directed a concerted effort to remove wild pigs from the county until the last wild pig (of 376 total) was successfully removed in 2016. We examined surveillance data from camera traps at bait sites and records of wild pig removals during this elimination program to identify environmental and anthropogenic factors that optimized removal of this population. Our results revealed that wild pigs used bait sites most during evening and nocturnal periods and on days with lower daily maximum temperatures. Increased removals of wild pigs coincided with periods of cold weather. We also identified that fidelity and time spent at bait sites by wild pigs was not influenced by increasing removals of wild pigs. Finally, the costs to remove wild pigs averaged $50 per wild pig (6.8 effort hours per wild pig) for removing the first 99% of the animals. Cost for removing the last 1% increased 84-fold, and averaged 122.8 effort hours per wild pig removed. Our results demonstrated that increased effort in removing wild pigs using bait sites should be focused during periods of environmental stress to maximize removal efficiency. These results inform elimination programs attempting to remove newly established populations of wild pigs, and ultimately prevent population and geographic expansion.


Subject(s)
Agriculture/economics , Animals, Wild/physiology , Introduced Species/economics , Sus scrofa/physiology , Animals , Ecosystem , Humans , Illinois , Swine
2.
Pest Manag Sci ; 75(4): 1140-1149, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30324708

ABSTRACT

BACKGROUND: An international effort to develop an acute and humane toxic bait for invasive wild pigs (Sus scrofa) is underway to curtail their expansion. We evaluated the ability to expose a population of wild pigs to a simulated toxic bait (i.e., placebo bait containing a biomarker, rhodamine B, in lieu of the toxic ingredient) to gain insight on potential population reduction. We used 28 GPS-collars and sampled 428 wild pigs to examine their vibrissae for evidence of consuming the bait. RESULTS: We estimated that 91% of wild pigs within 0.75 km of bait sites (total area = 16.8 km2 ) consumed the simulated toxic bait, exposing them to possible lethal effects. Bait sites spaced 0.75-1.5 km apart achieved optimal delivery of the bait, but wild pigs ranging ≥ 3 km away were susceptible. Use of wild pig-specific bait stations resulted in no non-target species directly accessing the bait. CONCLUSION: Results demonstrate the potential for exposing a large proportion of wild pigs to a toxic bait in similar ecosystems. Toxic baits may be an effective tool for reducing wild pig populations especially if used as part of an integrated pest management strategy. Investigation of risks associated with a field-deployment of the toxic bait is needed. © 2018 Society of Chemical Industry.


Subject(s)
Eating , Pest Control , Rhodamines/analysis , Sus scrofa/physiology , Animals , Biomarkers/analysis , Female , Introduced Species , Male , Population Dynamics , Texas
3.
Pest Manag Sci ; 74(11): 2504-2510, 2018 Nov.
Article in English | MEDLINE | ID: mdl-29624855

ABSTRACT

BACKGROUND: Invasive wild pigs damage agriculture, property, and natural ecosystems. To curtail damage, an effective and humane toxic bait containing microencapsulated sodium nitrite is under development. Strategies for delivering the toxic bait are needed to establish adequate spacing of bait sites, and for simultaneously accustoming wild pigs to the novel bait and wild pig-specific bait stations designed to exclude non-target species. RESULTS: We monitored movements of 32 Global Positioning System (GPS)-collared wild pigs relative to 41 bait sites containing placebo bait. Among the bait sites, we compared three experimental baiting strategies (and a control) to evaluate which strategy led to the most wild pigs accessing the placebo bait inside bait stations. We found that bait sites should be spaced 0.5-1 km apart to maximize opportunities for all wild pigs to find and utilize the bait sites. Baiting strategies that allowed ≥ 15 days for accustoming wild pigs to bait stations were most effective and resulted in nearly 90% of wild pigs accessing the placebo bait inside the bait stations. Bait stations excluded all non-target animals, except one instance with a raccoon (Procyon lotor). CONCLUSION: These results demonstrate the potential for toxic bait to be an effective tool for reducing populations of wild pigs with minimal risks to non-target species, if optimized delivery procedures are followed. © 2018 Society of Chemical Industry.


Subject(s)
Animal Distribution , Movement , Pest Control/methods , Sus scrofa/physiology , Animals , Deer/physiology , Female , Male , Raccoons/physiology , Texas
4.
Pest Manag Sci ; 74(1): 181-188, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28762643

ABSTRACT

BACKGROUND: An acute and orally delivered toxic bait containing micro-encapsulated sodium nitrite (MESN), is under development to provide a novel and humane technology to help curtail damage caused by invasive wild pigs (Sus scrofa). We evaluated potential secondary risks for non-target species by: testing whether four different types of micro-encapsulation coatings could reduce vomiting by invasive wild pigs, testing the levels of residual sodium nitrite (SN) in tissues of invasive wild pigs, testing the environmental persistence of SN in vomitus, and conducting a risk assessment for scavengers. RESULTS: Micro-encapsulation coatings did not affect the frequency of vomiting. We identified no risk of secondary poisoning for non-target scavengers that consume muscle, eyes, and livers of invasive wild pig carcasses because residual SN from the toxic bait was not detected in those tissues. The risk of secondary poisoning from consuming vomitus appeared low because ∼90% of the SN was metabolized or broken down prior to vomiting, and continued to degrade after being exposed to the environment. Secondary poisoning could occur for common scavengers that consume approximately ≥15% of their daily dietary requirements of digestive tract tissues or undigested bait from carcasses of invasive wild pigs in a rapid, single-feeding event. The likelihood of this occurring in a natural setting is unknown. The digestive tracts of poisoned invasive wild pigs contained an average of ∼4.35 mg/g of residual SN. CONCLUSION: Data from this study suggest no risks of secondary poisoning for non-target species (including humans) that consume muscle, liver, or eyes of invasive wild pigs poisoned with a MESN toxic bait. More species-specific testing for scavengers that consume digestive tract tissues and undigested bait is needed to reduce uncertainty about these potential risks. © 2017 Society of Chemical Industry.


Subject(s)
Animals, Wild , Pest Control/instrumentation , Poisoning/prevention & control , Sodium Nitrite/toxicity , Sus scrofa , Animals , Female , Male , Sodium Nitrite/metabolism , Vomiting/chemically induced , Vomiting/prevention & control
SELECTION OF CITATIONS
SEARCH DETAIL
...