Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 14(3): e0212193, 2019.
Article in English | MEDLINE | ID: mdl-30897114

ABSTRACT

Myalgic encephalomyelitis / chronic fatigue syndrome (ME/CFS) is a syndrome of unknown etiology characterized by profound fatigue exacerbated by physical activity, also known as post-exertional malaise (PEM). Previously, we did not detect evidence of immune dysregulation or virus reactivation outside of PEM periods. Here we sought to determine whether cardiopulmonary exercise stress testing of ME/CFS patients could trigger such changes. ME/CFS patients (n = 14) and matched sedentary controls (n = 11) were subjected to cardiopulmonary exercise on 2 consecutive days and followed up to 7 days post-exercise, and longitudinal whole blood samples analyzed by RNA-seq. Although ME/CFS patients showed significant worsening of symptoms following exercise versus controls, with 8 of 14 ME/CFS patients showing reduced oxygen consumption ([Formula: see text]) on day 2, transcriptome analysis yielded only 6 differentially expressed gene (DEG) candidates when comparing ME/CFS patients to controls across all time points. None of the DEGs were related to immune signaling, and no DEGs were found in ME/CFS patients before and after exercise. Virome composition (P = 0.746 by chi-square test) and number of viral reads (P = 0.098 by paired t-test) were not significantly associated with PEM. These observations do not support transcriptionally-mediated immune cell dysregulation or viral reactivation in ME/CFS patients during symptomatic PEM episodes.


Subject(s)
Exercise Test/adverse effects , Fatigue Syndrome, Chronic/genetics , Fatigue/genetics , Adult , Case-Control Studies , Exercise/physiology , Fatigue/complications , Fatigue Syndrome, Chronic/blood , Fatigue Syndrome, Chronic/immunology , Female , Gene Expression Profiling/methods , Humans , Longitudinal Studies , Middle Aged , Transcriptome/genetics
2.
J Strength Cond Res ; 32(6): 1671-1677, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29373428

ABSTRACT

Jensen, CD, Gleason, D, and VanNess, JM. Four-week unstructured break improved athletic performance in collegiate rugby players. J Strength Cond Res 32(6): 1671-1677, 2018-This study analyzed the changes in athletic performance and anthropometric characteristics in collegiate male club rugby athletes (n = 14) after a 4-week winter break. All measurements were collected before and after the break. Body composition was assessed by body mass index and hydrostatic weighing. Performance measurements were as follows: V[Combining Dot Above]O2max, vertical jump, 10-yard sprint, squat max, and bench press max. Before testing, each subject was acclimated to the protocols to reduce learning effects. During the 4-week break, no workouts were provided for the athletes; it was unsupervised and unstructured. Participants were required to maintain and submit self-reported nutritional and activity logs during this period. After the break, the athletes demonstrated a 5.0% improvement in V[Combining Dot Above]O2max (absolute increase of 2.25 ml·kg·min), 6.8% improvement in vertical jump (1.50 inches), and a 14.3% increase in squat max (38.64 lb). Although increases in body mass (1.0%) were not significant, the body fat percentage exhibited a relative increase of 19.3% (absolute change from 13.35 to 15.93%). A significant discriminate function analysis indicated statistical differences between groups based on these variables. Self-reported behavior logs confirmed participation in >3 days of moderate to intense physical activity per week but somewhat poor dietary habits. These results indicate that collegiate rugby athletes may not need prescribed exercise routines during seasonal breaks in the athletic schedule. However, it may be beneficial to provide structured nutritional advice during unsupervised periods.


Subject(s)
Athletic Performance , Body Composition , Football/physiology , Adiposity , Adolescent , Adult , Body Mass Index , Diet , Exercise , Exercise Test , Humans , Male , Oxygen Consumption , Universities , Young Adult
3.
Phys Ther ; 90(4): 602-14, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20185614

ABSTRACT

Fatigue is one of the most common reasons why people consult health care providers. Chronic fatigue syndrome/myalgic encephalomyelitis (CFS/ME) is one cause of clinically debilitating fatigue. The underdiagnosis of CFS/ME, along with the spectrum of symptoms that represent multiple reasons for entry into physical therapy settings, places physical therapists in a unique position to identify this health condition and direct its appropriate management. The diagnosis and clinical correlates of CFS/ME are becoming better understood, although the optimal clinical management of this condition remains controversial. The 4 aims of this perspective article are: (1) to summarize the diagnosis of CFS/ME with the goal of promoting the optimal recognition of this condition by physical therapists; (2) to discuss aerobic system and cognitive deficits that may lead to the clinical presentation of CFS/ME; (3) to review the evidence for graded exercise with the goal of addressing limitations in body structures and functions, activity, and participation in people with CFS/ME; and (4) to present a conceptual model for the clinical management of CFS/ME by physical therapists.


Subject(s)
Exercise/physiology , Fatigue Syndrome, Chronic/rehabilitation , Cognition Disorders/physiopathology , Exercise Test , Exercise Tolerance/physiology , Fatigue Syndrome, Chronic/diagnosis , Fatigue Syndrome, Chronic/physiopathology , Humans , Oxygen Consumption/physiology
SELECTION OF CITATIONS
SEARCH DETAIL