Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Protein J ; 43(1): 62-71, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38066288

ABSTRACT

Recent clinical data have identified infant patients with lethal ITPA deficiencies. ITPA is known to modulate ITP concentrations in cells and has a critical function in neural development which is not understood. Polymorphism of the ITPA gene affects outcomes for both ribavirin and thiopurine based therapies and nearly one third of the human population is thought to harbor ITPA polymorphism. In a previous site-directed mutagenesis alanine screen of the ITPA substrate selectivity pocket, we identified the ITPA mutant, E22A, as a gain-of function mutant with enhanced ITP hydrolysis activity. Here we report a rational enzyme engineering experiment to investigate the biochemical properties of position 22 ITPA mutants and find that the E22D ITPA has two- and four-fold improved substrate selectivity for ITP over the canonical purine triphosphates ATP and GTP, respectively, while maintaining biological activity. The novel E22D ITPA should be considered as a platform for further development of ITPA therapies.


Subject(s)
Inosine Triphosphatase , Pyrophosphatases , Humans , Pyrophosphatases/chemistry , Pyrophosphatases/genetics , Polymorphism, Genetic , Genotype
2.
Arch Biochem Biophys ; 744: 109700, 2023 08.
Article in English | MEDLINE | ID: mdl-37506994

ABSTRACT

The inosine triphosphate pyrophosphatase (ITPA) enzyme plays a critical cellular role by removing noncanonical nucleoside triphosphates from nucleotide pools. One of the first pathological ITPA mutants identified is R178C (rs746930990), which causes a fatal infantile encephalopathy, termed developmental and epileptic encephalopathy 35 (DEE 35). The accumulation of noncanonical nucleotides such as inosine triphosphate (ITP), is suspected to affect RNA and/or interfere with normal nucleotide function, leading to development of DEE 35. Molecular dynamics simulations have shown that the very rare R178C mutation does not significantly perturb the overall structure of the protein, but results in a high level of structural flexibility and disrupts active-site hydrogen bond networks, while preliminary biochemical data indicate that ITP hydrolyzing activity is significantly reduced for the R178C mutant. Here we report Michaelis-Menten enzyme kinetics data for the R178C ITPA mutant and three other position 178 ITPA mutants. These data confirm that position 178 is essential for ITPA activity and even conservative mutation at this site (R178K) results in significantly reduced enzyme activity. Our data support that disruption of the active-site hydrogen bond network is a major cause of diminished ITP hydrolyzing activity for the R178C mutation. These results suggest an avenue for developing therapies to address DEE 35.


Subject(s)
Inosine , Pyrophosphatases , Pyrophosphatases/metabolism , Inosine Triphosphate/metabolism , Arginine , Nucleotides/metabolism
3.
J Biomol Struct Dyn ; 39(4): 1236-1247, 2021 Mar.
Article in English | MEDLINE | ID: mdl-32129147

ABSTRACT

The inosine triphosphate pyrophosphatase (ITPA) protein is responsible for removing noncanonical purine nucleoside triphosphates from intracellular nucleotide pools. Absence of ITPA results in genomic instability and increased levels of inosine in DNA and RNA. The proline to threonine substitution at position 32 (P32T) affects roughly 15% of the global population and can modulate treatment outcomes for cancer, lupus, and hepatitis C patients. The substitution of arginine with cysteine at position 178 (R178C) is extremely uncommon and has only been reported in a small cohort of early infantile encephalopathy patients suggesting that a functional ITPA protein is required for life in humans. Here we present molecular dynamic simulations that describe the structure and dynamics of the wild-type ITPA homodimer and two of its clinically relevant mutants, P32T and R178C. The simulation results indicate that both the P32T and R178C mutations alter the structure and dynamic properties of the protein and provide a possible explanation of the experimentally observed effect of the mutations on ITPA activity. Specifically, the mutations increased the overall flexibility of the protein and changed the dominant collective motions of the top lobe as well as the helix 2 of the lower lobe. Moreover, we have identified key active-site residues that are classified as essential or intermediate for inosine triphosphate (ITP) hydrolyzing activity based on their hydrogen bond occupancy. Here we also present biochemical data indicating that the R178C mutant has very low ITP hydrolyzing activity.Communicated by Ramaswamy H. Sarma.


Subject(s)
Inosine Triphosphate , Molecular Dynamics Simulation , Humans , Inosine , Mutation , Pyrophosphatases/genetics , Pyrophosphatases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...