Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
Proc Natl Acad Sci U S A ; 116(9): 3728-3733, 2019 02 26.
Article in English | MEDLINE | ID: mdl-30733288

ABSTRACT

Human cytomegalovirus (HCMV) causes substantial disease in transplant patients and harms the development of the nervous system in babies infected in utero. Thus, there is a major focus on developing safe and effective HCMV vaccines. Evidence has been presented that a major target of neutralizing antibodies (NAbs) is the HCMV pentamer glycoprotein gH/gL/UL128-131. In some studies, most of the NAbs in animal or human sera were found to recognize the pentamer, which mediates HCMV entry into endothelial and epithelial cells. It was also reported that pentamer-specific antibodies correlate with protection against transmission from mothers to babies. One problem with the studies on pentamer-specific NAbs to date has been that the studies did not compare the pentamer to the other major form of gH/gL, the gH/gL/gO trimer, which is essential for entry into all cell types. Here, we demonstrate that both trimer and pentamer NAbs are frequently found in human transplant patients' and pregnant mothers' sera. Depletion of human sera with trimer caused reductions in NAbs similar to that observed following depletion with the pentamer. The trimer- and pentamer-specific antibodies acted in a synergistic fashion to neutralize HCMV and also to prevent virus cell-to-cell spread. Importantly, there was no correlation between the titers of trimer- and pentamer-specific NAbs and transmission of HCMV from mothers to babies. Therefore, both the trimer and pentamer are important targets of NAbs. Nevertheless, these antibodies do not protect against transmission of HCMV from mothers to babies.


Subject(s)
Antibodies, Neutralizing/pharmacology , Cytomegalovirus Infections/transmission , Cytomegalovirus/immunology , Membrane Glycoproteins/immunology , Animals , Antibodies, Neutralizing/immunology , Cytomegalovirus/chemistry , Cytomegalovirus/pathogenicity , Cytomegalovirus Infections/immunology , Cytomegalovirus Infections/prevention & control , Cytomegalovirus Vaccines/chemistry , Cytomegalovirus Vaccines/immunology , Epithelial Cells/immunology , Female , Humans , Pregnancy , Virus Internalization
2.
J Virol ; 92(21)2018 11 01.
Article in English | MEDLINE | ID: mdl-30111564

ABSTRACT

Human cytomegalovirus (HCMV) infects a wide variety of human cell types by different entry pathways that involve distinct envelope glycoprotein complexes that include gH/gL, a trimer complex consisting of gHgL/gO, and a pentamer complex consisting of gH/gL/UL128/UL130/UL131. We characterized the effects of soluble forms of these proteins on HCMV entry. Soluble trimer and pentamer blocked entry of HCMV into epithelial and endothelial cells, whereas soluble gH/gL did not. Trimer inhibited HCMV entry into fibroblast cells, but pentamer and gH/gL did not. Both trimer and pentamer bound to the surfaces of fibroblasts and epithelial cells, whereas gH/gL did not bind to either cell type. Cell surface binding of trimer and pentamer did not involve heparin sulfate moieties. The ability of soluble trimer to block entry of HCMV into epithelial cells did not involve platelet-derived growth factor PDGFRα, which has been reported as a trimer receptor for fibroblasts. Soluble trimer reduced the amount of virus particles that could be adsorbed onto the surface of epithelial cells, whereas soluble pentamer had no effect on virus adsorption. However, soluble pentamer reduced the ability of virus particles to exit from early endosomes into the cytoplasm and then travel to the nucleus. These studies support a model in which both the trimer and pentamer are required for HCMV entry into epithelial and endothelial cells, with trimer interacting with cell surface receptors other than PDGFR and pentamer acting later in the entry pathway to promote egress from endosomes.IMPORTANCE HCMV infects nearly 80% of the world's population and causes significant morbidity and mortality. The current antiviral agents used to treat HCMV infections are prone to resistance and can be toxic to patients, and there is no current vaccine against HCMV available. The data in this report will lead to a better understanding of how essential HCMV envelope glycoproteins function during infection of biologically important cell types and will have significant implications for understanding HCMV pathogenesis for developing new therapeutics.


Subject(s)
Cytomegalovirus/physiology , Epithelial Cells/virology , Human Umbilical Vein Endothelial Cells/virology , Membrane Glycoproteins/metabolism , Viral Envelope Proteins/metabolism , Virus Internalization , Cell Membrane/virology , Cells, Cultured , Cytomegalovirus/genetics , Cytomegalovirus Infections/pathology , DNA, Viral/metabolism , Endosomes/virology , Humans , Protein Binding/physiology , Protein Multimerization/physiology , Retinal Pigment Epithelium/cytology
3.
mBio ; 9(3)2018 05 08.
Article in English | MEDLINE | ID: mdl-29739904

ABSTRACT

Human cytomegalovirus (HCMV) replicates in many diverse cell types in vivo, and entry into different cells involves distinct entry mechanisms and different envelope glycoproteins. HCMV glycoprotein gB is thought to act as the virus fusogen, apparently after being triggered by different gH/gL proteins that bind distinct cellular receptors or entry mediators. A trimer of gH/gL/gO is required for entry into all cell types, and entry into fibroblasts involves trimer binding to platelet-derived growth factor receptor alpha (PDGFRα). HCMV entry into biologically relevant epithelial and endothelial cells and monocyte-macrophages also requires a pentamer, gH/gL complexed with UL128, UL130, and UL131, and there is evidence that the pentamer binds unidentified receptors. We screened an epithelial cell cDNA library and identified the cell surface protein CD147, which increased entry of pentamer-expressing HCMV into HeLa cells but not entry of HCMV that lacked the pentamer. A panel of CD147-specific monoclonal antibodies inhibited HCMV entry into epithelial and endothelial cells, but not entry into fibroblasts. shRNA silencing of CD147 in endothelial cells inhibited HCMV entry but not entry into fibroblasts. CD147 colocalized with HCMV particles on cell surfaces and in endosomes. CD147 also promoted cell-cell fusion induced by expression of pentamer and gB in epithelial cells. However, soluble CD147 did not block HCMV entry and trimer and pentamer did not bind directly to CD147, supporting the hypothesis that CD147 acts indirectly through other proteins. CD147 represents the first HCMV entry mediator that specifically functions to promote entry of pentamer-expressing HCMV into epithelial and endothelial cells.IMPORTANCE Human cytomegalovirus infects nearly 80% of the world's population and causes significant morbidity and mortality. The current method of treatment involves the use of antiviral agents that are prone to resistance and can be highly toxic to patients; currently, there is no vaccine against HCMV available. HCMV infections involve virus dissemination throughout the body, infecting a wide variety of tissues; however, the mechanism of spread is not well understood, particularly with regard to which cellular proteins are utilized by HCMV to establish infection. This report describes the characterization of a newly identified cellular molecule that affects HCMV entry into epithelial and endothelial cells. These results will lead to a better understanding of HCMV pathogenesis and have implications for the development of future therapeutics.


Subject(s)
Basigin/metabolism , Cytomegalovirus Infections/metabolism , Cytomegalovirus Infections/virology , Cytomegalovirus/physiology , Endothelial Cells/virology , Epithelial Cells/virology , Virus Internalization , Basigin/genetics , Cytomegalovirus/genetics , Cytomegalovirus Infections/genetics , Endothelial Cells/metabolism , Epithelial Cells/metabolism , Fibroblasts/metabolism , Fibroblasts/virology , HeLa Cells , Humans , Viral Envelope Proteins/genetics , Viral Envelope Proteins/metabolism
4.
J Exp Med ; 214(7): 1889-1899, 2017 Jul 03.
Article in English | MEDLINE | ID: mdl-28566275

ABSTRACT

Cytomegalovirus (CMV)-based vaccines have shown remarkable efficacy in the rhesus macaque model of acquired immune deficiency syndrome, enabling 50% of vaccinated monkeys to clear a subsequent virulent simian immunodeficiency virus challenge. The protective vaccine elicited unconventional CD8 T cell responses that were entirely restricted by MHC II or the nonclassical MHC I molecule, MHC-E. These unconventional responses were only elicited by a fibroblast-adapted rhesus CMV vector with limited tissue tropism; a repaired vector with normal tropism elicited conventional responses. Testing whether these unusual protective CD8 T responses could be elicited in humans requires vaccinating human subjects with a fibroblast-adapted mutant of human CMV (HCMV). In this study, we describe the CD8 T cell responses of human subjects vaccinated with two fibroblast-adapted HCMV vaccines. Most responses were identified as conventional classically MHC I restricted, and we found no evidence for MHC II or HLA-E restriction. These results indicate that fibroblast adaptation alone is unlikely to explain the unconventional responses observed in macaques.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Cytomegalovirus Infections/immunology , Cytomegalovirus Vaccines/immunology , Cytomegalovirus/immunology , Fibroblasts/immunology , Amino Acid Sequence , Cell Line , Cell Line, Tumor , Cells, Cultured , Cytomegalovirus/physiology , Cytomegalovirus Infections/prevention & control , Cytomegalovirus Infections/virology , Cytomegalovirus Vaccines/administration & dosage , Cytomegalovirus Vaccines/genetics , Epitopes/immunology , Fibroblasts/virology , Flow Cytometry , Histocompatibility Antigens Class I/immunology , Host-Pathogen Interactions/drug effects , Host-Pathogen Interactions/immunology , Humans , K562 Cells , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/virology , Male , Microscopy, Fluorescence , Mutation , Vaccination
5.
J Clin Microbiol ; 55(7): 2098-2104, 2017 07.
Article in English | MEDLINE | ID: mdl-28446569

ABSTRACT

Diagnostic mutations in the cytomegalovirus UL97 kinase gene are used to assess the level of associated ganciclovir resistance and therapeutic options. The best-known mutations at codons 460, 520, or 591 to 607 individually confer 5- to 10-fold-decreased ganciclovir susceptibility, except that a 3-fold decrease occurs in the case of the amino acid substitution C592G. Less common point and in-frame deletion mutations at codons 591 to 603 remain incompletely characterized. The ganciclovir susceptibilities of 17 mutants in this codon range were evaluated by use of the same recombinant phenotyping system and extensive assay replicates in two types of cell cultures. Amino acid substitutions K599E and T601M conferred no ganciclovir resistance, while A591V conferred 3.8-fold-decreased susceptibility. In-frame deletions of three or more codons conferred at least 8-fold-increased ganciclovir resistance, while the level of resistance conferred by one- or two-codon deletions varied from 4- to 10-fold, depending on their location. Measured levels of ganciclovir resistance were closely comparable when assays were performed in either fibroblasts or modified retinal epithelial cells. The significant revision of a few previously published resistance phenotypes and the new data strengthen the interpretation of genotypic testing for cytomegalovirus drug resistance.


Subject(s)
Antiviral Agents/pharmacology , Codon , Cytomegalovirus/drug effects , Drug Resistance, Viral , Ganciclovir/pharmacology , Mutation , Phosphotransferases (Alcohol Group Acceptor)/genetics , Humans , Microbial Sensitivity Tests
6.
PLoS Pathog ; 12(4): e1005564, 2016 Apr.
Article in English | MEDLINE | ID: mdl-27082872

ABSTRACT

Human cytomegalovirus (HCMV) is a ubiquitous virus that is a major pathogen in newborns and immunocompromised or immunosuppressed patients. HCMV infects a wide variety of cell types using distinct entry pathways that involve different forms of the gH/gL glycoprotein: gH/gL/gO and gH/gL/UL128-131 as well as the viral fusion glycoprotein, gB. However, the minimal or core fusion machinery (sufficient for cell-cell fusion) is just gH/gL and gB. Here, we demonstrate that HCMV gB and gH/gL form a stable complex early after their synthesis and in the absence of other viral proteins. gH/gL can interact with gB mutants that are unable to mediate cell-cell fusion. gB-gH/gL complexes included as much as 16-50% of the total gH/gL in HCMV virus particles. In contrast, only small amounts of gH/gL/gO and gH/gL/UL128-131 complexes were found associated with gB. All herpesviruses express gB and gH/gL molecules and most models describing herpesvirus entry suggest that gH/gL interacts with gB to mediate membrane fusion, although there is no direct evidence for this. For herpes simplex virus (HSV-1) it has been suggested that after receptor binding gH/gL binds to gB either just before, or coincident with membrane fusion. Therefore, our results have major implications for these models, demonstrating that HCMV gB and gH/gL forms stable gB-gH/gL complexes that are incorporated virions without receptor binding or membrane fusion. Moreover, our data is the best support to date for the proposal that gH/gL interacts with gB.


Subject(s)
Cytomegalovirus Infections/virology , Cytomegalovirus/pathogenicity , Viral Fusion Proteins/metabolism , Virion/pathogenicity , Virus Internalization , Blotting, Western , Cytomegalovirus/metabolism , Humans , Immunoprecipitation , Virion/metabolism
7.
PLoS Pathog ; 8(9): e1002905, 2012 Sep.
Article in English | MEDLINE | ID: mdl-23028311

ABSTRACT

Epidermal growth factor receptor (EGFR) and platelet-derived growth factor receptor-α (PDGFRα) were reported to mediate entry of HCMV, including HCMV lab strain AD169. AD169 cannot assemble gH/gL/UL128-131, a glycoprotein complex that is essential for HCMV entry into biologically important epithelial cells, endothelial cells, and monocyte-macrophages. Given this, it appeared incongruous that EGFR and PDGFRα play widespread roles in HCMV entry. Thus, we investigated whether PDGFRα and EGFR could promote entry of wild type HCMV strain TR. EGFR did not promote HCMV entry into any cell type. PDGFRα-transduction of epithelial and endothelial cells and several non-permissive cells markedly enhanced HCMV TR entry and surprisingly, promoted entry of HCMV mutants lacking gH/gL/UL128-131 into epithelial and endothelial cells. Entry of HCMV was not blocked by a panel of PDGFRα antibodies or the PDGFR ligand in fibroblasts, epithelial, or endothelial cells or by shRNA silencing of PDGFRα in epithelial cells. Moreover, HCMV glycoprotein induced cell-cell fusion was not increased when PDGFRα was expressed in cells. Together these results suggested that HCMV does not interact directly with PDGFRα. Instead, the enhanced entry produced by PDGFRα resulted from a novel entry pathway involving clathrin-independent, dynamin-dependent endocytosis of HCMV followed by low pH-independent fusion. When PDGFRα was expressed in cells, an HCMV lab strain escaped endosomes and tegument proteins reached the nucleus, but without PDGFRα virions were degraded. By contrast, wild type HCMV uses another pathway to enter epithelial cells involving macropinocytosis and low pH-dependent fusion, a pathway that lab strains (lacking gH/gL/UL128-131) cannot follow. Thus, PDGFRα does not act as a receptor for HCMV but increased PDGFRα alters cells, facilitating virus entry by an abnormal pathway. Given that PDGFRα increased infection of some cells to 90%, PDGFRα may be very useful in overcoming inefficient HCMV entry (even of lab strains) into the many difficult-to-infect cell types.


Subject(s)
Cytomegalovirus/physiology , Receptor, Platelet-Derived Growth Factor alpha/metabolism , Virus Internalization , Animals , Antibodies, Monoclonal/immunology , Aotidae , Benzamides/pharmacology , Cell Fusion , Cell Line , Clathrin/metabolism , Cytomegalovirus/genetics , Cytomegalovirus/pathogenicity , Cytomegalovirus Infections/metabolism , Cytomegalovirus Infections/virology , Dynamins/metabolism , Endocytosis , Endothelial Cells/virology , Epithelial Cells/virology , ErbB Receptors/metabolism , Fibroblasts/metabolism , Fibroblasts/virology , HeLa Cells , Human Umbilical Vein Endothelial Cells , Humans , Imatinib Mesylate , Membrane Glycoproteins/metabolism , Piperazines/pharmacology , Protein Kinase Inhibitors/pharmacology , Pyrimidines/pharmacology , RNA Interference , RNA, Small Interfering , Rats , Receptor, Platelet-Derived Growth Factor alpha/genetics , Receptor, Platelet-Derived Growth Factor alpha/immunology , Virus Internalization/drug effects
9.
J Virol ; 85(22): 11638-45, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21880752

ABSTRACT

A complex of five human cytomegalovirus virus (HCMV) proteins, gH, gL, UL128, UL130, and UL131 (gH/gL/UL128-131), is essential for virus entry into epithelial cells. We previously showed that gH/gL/UL128-131 expressed in epithelial cells interferes with subsequent HCMV entry into cells. There was no interference with only gH/gL or gB. We concluded that the expression of gH/gL/UL128-131 causes a mislocalization or downregulation of epithelial cell proteins that HCMV requires for entry. In contrast, gH/gL/UL128-131 expression in fibroblasts did not produce interference, suggesting a different mechanism for entry. Here, we show that the coexpression of another HCMV glycoprotein, gO, with gH/gL in human fibroblasts interferes with HCMV entry into fibroblasts but not epithelial cells. However, the coexpression of gO with gH/gL did not increase the cell surface expression level of gH/gL and did not enhance cell-cell fusion, a process that depends upon cell surface gH/gL. Instead, gO promoted the export of gH/gL from the endoplasmic reticulum (ER) and the accumulation of gH/gL in the trans-Golgi network. Thus, interference with gH/gL or gH/gL/gO, i.e., the mislocalization or blocking of entry mediators, occurs in cytoplasmic membranes and not in cell surface membranes of fibroblasts. Together, the results provide additional support for our hypotheses that epithelial cells express putative gH/gL/UL128-1331 receptors important for HCMV entry and that fibroblasts express distinct gH/gL receptors.


Subject(s)
Cytomegalovirus/physiology , Membrane Glycoproteins/metabolism , Protein Multimerization , Viral Envelope Proteins/metabolism , Viral Proteins/metabolism , Virus Internalization , Cells, Cultured , Epithelial Cells/virology , Fibroblasts/virology , Humans , Protein Binding
10.
J Neurovirol ; 14(5): 389-400, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18989818

ABSTRACT

Latency-associated transcript (LAT) deletion mutants of herpes simplex virus type 1 (HSV-1) have reduced reactivation phenotypes. Thus, LAT plays an essential role in the latency-reactivation cycle of HSV-1. We have shown that LAT has antiapoptosis activity and demonstrated that the chimeric virus, dLAT-cpIAP, resulting from replacing LAT with the baculovirus antiapoptosis gene cpIAP, has a wild-type HSV-1 reactivation phenotype in mice and rabbits. Thus, LAT can be replaced by an alternative antiapoptosis gene, confirming that LAT's antiapoptosis activity plays an important role in the mechanism by which LAT enhances the virus' reactivation phenotype. However, because cpIAP interferes with both of the major apoptosis pathways, these studies did not address whether LAT's proreactivation phenotype function was due to blocking the extrinsic (Fas-ligand-, caspase-8-, or caspase-10-dependent pathway) or the intrinsic (mitochondria-, caspase-9-dependent pathway) pathway, or whether both pathways must be blocked. Here we constructed an HSV-1 LAT(-) mutant that expresses cellular FLIP (cellular FLICE-like inhibitory protein) under control of the LAT promoter and in place of LAT nucleotides 76 to 1667. Mice were ocularly infected with this mutant, designated dLAT-FLIP, and the reactivation phenotype was determined using the trigeminal ganglia explant model. dLAT-FLIP had a reactivation phenotype similar to wild-type virus and significantly higher than the LAT(-) mutant dLAT2903. Thus, the LAT function responsible for enhancing the reactivation phenotype could be replaced with an antiapoptosis gene that primarily blocks the extrinsic signaling apoptosis pathway.


Subject(s)
CASP8 and FADD-Like Apoptosis Regulating Protein/metabolism , Herpes Simplex/virology , Herpesvirus 1, Human/genetics , Herpesvirus 1, Human/physiology , MicroRNAs/metabolism , Phenotype , Animals , Apoptosis , Cell Line , Eye/virology , Female , Gene Expression Regulation, Viral , Genome, Viral/genetics , Mice , Rabbits , Survival Analysis , Virus Activation/genetics
11.
J Virol ; 82(23): 11837-50, 2008 Dec.
Article in English | MEDLINE | ID: mdl-18815310

ABSTRACT

Herpesviruses use a cascade of interactions with different cell surface molecules to gain entry into cells. In many cases, this involves binding to abundant glycosaminoglycans or integrins followed by interactions with more limited cell surface proteins, leading to fusion with cellular membranes. Human cytomegalovirus (HCMV) has the ability to infect a wide variety of human cell types in vivo. However, very little is known about which HCMV glycoproteins mediate entry into various cell types, including relevant epithelial and endothelial cells. For other herpesviruses, studies of cell-cell fusion induced by viral proteins have provided substantial information about late stages of entry. In this report, we describe the fusion of epithelial, endothelial, microglial, and fibroblast cells in which HCMV gB and gH/gL were expressed from nonreplicating adenovirus vectors. Fusion frequently involved the majority of cells, and gB and gH/gL were both necessary and sufficient for fusion, whereas no fusion occurred when either glycoprotein was omitted. Coexpression of UL128, UL130, and UL131 did not enhance fusion. We concluded that the HCMV core fusion machinery consists of gB and gH/gL. Coimmunoprecipitation indicated that HCMV gB and gH/gL can interact. Importantly, expression of gB and gH/gL in trans (gB-expressing cells mixed with other gH/gL-expressing cells) resulted in substantial fusion. We believe that this is the first description of a multicomponent viral fusion machine that can be split between cells. If gB and gH/gL must interact for fusion, then these molecules must reach across the space between apposing cells. Expression of gB and gH/gL in trans with different cell types revealed surface molecules that are required for fusion on HCMV-permissive cells but not on nonpermissive cells.


Subject(s)
Cell Fusion , Viral Envelope Proteins/physiology , Viral Proteins/physiology , Cell Line , Epithelial Cells/cytology , Humans , Immunoprecipitation , Membrane Glycoproteins/physiology , Viral Envelope Proteins/chemistry , Viral Proteins/chemistry
12.
Virology ; 370(2): 415-29, 2008 Jan 20.
Article in English | MEDLINE | ID: mdl-17935748

ABSTRACT

DNA-binding protein (DBP) of Autographa californica multiple nucleopolyhedrovirus (AcMNPV) was expressed as an N-terminal His(6)-tag fusion using a recombinant baculovirus and purified to near homogeneity. Purified DBP formed oligomers that were crosslinked by redox reagents resulting in predominantly protein dimers and tetramers. In gel retardation assays, DBP showed a high affinity for single-stranded oligonucleotides and was able to compete with another baculovirus SSB protein, LEF-3, for binding sites. DBP binding protected ssDNA against hydrolysis by a baculovirus alkaline nuclease AN/LEF-3 complex. Partial proteolysis by trypsin revealed a domain structure of DBP that is required for interaction with DNA and that can be disrupted by thermal treatment. Binding to ssDNA, but not to dsDNA, changed the pattern of proteolytic fragments of DBP indicating adjustments in protein structure upon interaction with ssDNA. DBP was capable of unwinding short DNA duplexes and also promoted the renaturation of long complementary strands of ssDNA into duplexes. The unwinding and renaturation activities of DBP, as well as the DNA binding activity, were sensitive to sulfhydryl reagents and were inhibited by oxidation of thiol groups with diamide or by alkylation with N-ethylmaleimide. A high affinity of DBP for ssDNA and its unwinding and renaturation activities confirmed identification of DBP as a member of the SSB/recombinase family. These activities and a tight association with subnuclear structures suggests that DBP is a component of the virogenic stroma that is involved in the processing of replicative intermediates.


Subject(s)
DNA-Binding Proteins/isolation & purification , Moths/virology , Nucleopolyhedroviruses/chemistry , Viral Proteins/isolation & purification , Amino Acid Sequence , Animals , Base Sequence , Cross-Linking Reagents , DNA Replication , DNA, Viral/genetics , DNA, Viral/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Hydrolysis , Kinetics , Molecular Sequence Data , Nucleopolyhedroviruses/genetics , Nucleopolyhedroviruses/physiology , Protein Denaturation , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Sulfhydryl Compounds/chemistry , Trypsin , Viral Proteins/genetics , Viral Proteins/metabolism
13.
Curr Drug Targets ; 8(10): 1096-102, 2007 Oct.
Article in English | MEDLINE | ID: mdl-17979669

ABSTRACT

In this report, factors involved in baculovirus DNA replication are reviewed. These include factors that are required for DNA synthesis, other factors that have been implicated in genome processing or packaging, and homologs of proteins that are involved in DNA replication or repair in other systems. Conservation of a number of these factors in all baculovirus genomes suggest that many of the observations for specific viral systems may apply to the most if not all members of the Baculoviridae.


Subject(s)
Baculoviridae/genetics , DNA Replication/physiology , Virus Replication/physiology , DNA, Viral/biosynthesis , DNA-Binding Proteins/metabolism , Genome, Viral/physiology , Viral Proteins/genetics , Viral Proteins/metabolism
14.
Virology ; 367(1): 187-95, 2007 Oct 10.
Article in English | MEDLINE | ID: mdl-17585983

ABSTRACT

To investigate the role of the gene products encoded from the open reading frames 101, 142, and 144 of Autographa californica multiple nucleopolyhedrovirus (AcMNPV), a set of bacmid knockout and repair constructs were generated. The repair genes were engineered to contain an HA epitope tag at their C-termini. The results of transfection-infection assays and growth curve analyses showed that the Ac 101, 142, and 144 genes were required for infectious virus production. To better characterize the role of these genes in the baculovirus replication cycle, quantitative DNA replication assays were performed and demonstrated that in cells transfected with the Ac 101, 142, or 144 knockouts, DNA replicated with similar kinetics as a control virus. Western blot analyses of budded virus from cells infected with the repair viruses showed that these proteins are associated with the viral nucleocapsid. Furthermore, immunoelectron microscopy of cells transfected with the knockout bacmids revealed defects in nucleocapsid production for all three constructs. From these results we concluded that the gene products encoded from these open reading frames are essential for virus production and may be involved in DNA processing, packaging, or nucleocapsid morphogenesis.


Subject(s)
Baculoviridae/genetics , Genes, Essential , Nucleopolyhedroviruses/genetics , Open Reading Frames , Viral Proteins/genetics , Animals , Baculoviridae/metabolism , Cells, Cultured , DNA Replication , Moths/virology , Nucleocapsid/metabolism , Nucleopolyhedroviruses/metabolism , Nucleopolyhedroviruses/physiology , Spodoptera , Transfection , Viral Proteins/metabolism , Virus Assembly , Virus Replication
15.
Virology ; 364(2): 475-85, 2007 Aug 01.
Article in English | MEDLINE | ID: mdl-17449080

ABSTRACT

Autographa californica multiple nucleopolyhedrovirus (AcMNPV) encodes two proteins that possess properties typical of single-stranded DNA-binding proteins (SSBs), late expression factor-3 (LEF-3), and a protein referred to as DNA-binding protein (DBP). Whereas LEF-3 is a multi-functional protein essential for viral DNA replication, transporting helicase into the nucleus, and forms a stable complex with the baculovirus alkaline nuclease, the role for DBP in baculovirus replication remains unclear. Therefore, to better understand the functional role of DBP in viral replication, a DBP knockout virus was generated from an AcMNPV bacmid and analyzed. The results of a growth curve analysis indicated that the dbp knockout construct was unable to produce budded virus indicating that dbp is essential. The lack of DBP does not cause a general shutdown of the expression of viral genes, as was revealed by accumulation of early (LEF-3), late (VP39), and very late (P10) proteins in cells transfected with the dbp knockout construct. To investigate the role of DBP in DNA replication, a real-time PCR-based assay was employed and showed that, although viral DNA synthesis occurred in cells transfected with the dbp knockout, the levels were less than that of the control virus suggesting that DBP is required for normal levels of DNA synthesis or for stability of nascent viral DNA. In addition, analysis of the viral DNA replicated by the dbp knockout by using field inversion gel electrophoresis failed to detect the presence of genome-length DNA. Furthermore, analysis of DBP from infected cells indicated that similar to LEF-3, DBP was tightly bound to viral chromatin. Assessment of the cellular localization of DBP relative to replicated viral DNA by immunoelectron microscopy indicated that, at 24 h post-infection, DBP co-localized with nascent DNA at distinct electron-dense regions within the nucleus. Finally, immunoelectron microscopic analysis of cells transfected with the dbp knockout revealed that DBP is required for the production of normal-appearing nucleocapsids and for the generation of the virogenic stroma.


Subject(s)
DNA-Binding Proteins/genetics , Nucleopolyhedroviruses/genetics , Viral Proteins/genetics , Animals , Base Sequence , Cell Line , Cell Nucleus/metabolism , Cell Nucleus/virology , DNA Replication , DNA, Viral/biosynthesis , DNA, Viral/genetics , DNA-Binding Proteins/metabolism , Gene Expression , Genes, Viral , Microscopy, Electron , Moths/virology , Nucleopolyhedroviruses/physiology , Spodoptera , Transfection , Viral Proteins/metabolism , Virus Replication/genetics
16.
Virology ; 359(1): 46-54, 2007 Mar 01.
Article in English | MEDLINE | ID: mdl-17046043

ABSTRACT

DNA replication of bacmid-derived constructs of the Autographa californica multiple nucleocapsid nucleopolyhedrovirus (AcMNPV) was analyzed by field inversion gel electrophoresis (FIGE) in combination with digestion at a unique Eco81I restriction enzyme site. Three constructs were characterized: a parental bacmid, a bacmid deleted for the alkaline nuclease gene, and a bacmid from which the gp64 gene had been deleted. The latter was employed as a control for comparison with the alkaline nuclease knockout because neither yields infectious virus and their replication is limited to the initially transfected cells. The major difference between DNA replicated by the different constructs was the presence in the alkaline nuclease knockout of high concentrations of relatively small, subgenome length DNA in preparations not treated with Eco81I. Furthermore, upon Eco81I digestion, the alkaline nuclease knockout bacmid also yielded substantially more subgenome size DNA than the other constructs. Electron microscopic examination of cells transfected with the alkaline nuclease knockout indicated that, in addition to a limited number of normal-appearing electron-dense nucleocapsids, numerous aberrant capsid-like structures were observed indicating a defect in nucleocapsid maturation or in a DNA processing step that is necessary for encapsidation. Because of the documented role of the baculovirus alkaline nuclease and its homologs from other viruses in homologous recombination, these data suggest that DNA recombination may play a major role in the production of baculovirus genomes.


Subject(s)
Capsid/ultrastructure , DNA Fragmentation , DNA, Viral/metabolism , Gene Deletion , Nucleopolyhedroviruses/genetics , Nucleopolyhedroviruses/physiology , Ribonucleases/genetics , Animals , Cell Line , DNA Replication , Electrophoresis, Agar Gel , Insecta , Recombination, Genetic , Ribonucleases/physiology , Transfection , Viral Proteins/genetics , Viral Proteins/physiology , Virus Assembly , Virus Replication
17.
J Virol ; 80(4): 1724-33, 2006 Feb.
Article in English | MEDLINE | ID: mdl-16439529

ABSTRACT

Very late expression factor 1 (VLF-1) of Autographa californica multiple nucleopolyhedrovirus is a putative tyrosine recombinase and is required for both very late gene expression and budded virus production. In this report, we show that a vlf-1 knockout bacmid was able to synthesize viral DNA at levels similar to that detected for a gp64 knockout bacmid that served as a noninfectious control virus. Additionally, analysis of replicated bacmid DNA by field-inversion gel electrophoresis indicated that VLF-1 is not required for synthesizing high-molecular-weight intermediates that could be resolved into unit-length genomes when cut at a unique restriction site. However, immunoelectron microscopic analysis revealed that in cells transfected with a vlf-1 knockout bacmid, aberrant tubular structures containing the capsid protein vp39 were observed, suggesting that this virus construct was defective in producing mature capsids. In contrast, rescuing the vlf-1 knockout bacmid construct with a copy of VLF-1 that carries a mutation of a highly conserved tyrosine (Y355F) was sufficient to restore the production of nucleocapsids with a normal appearance, but not infectious virus production. Furthermore, the results of a DNase I protection assay indicated that the DNA packaging efficiency of the VLF-1(Y355F) virus construct was similar to that of the gp64 knockout control. Finally, a recombinant virus containing a functional hemagglutinin epitope-tagged version of VLF-1 was constructed to investigate the association of VLF-1 with the nucleocapsid. Analysis by immunoelectron microscopy of Sf-9 cells infected with this virus showed that VLF-1 localized to an end region of the nucleocapsid. Collectively, these results indicate that VLF-1 is required for normal capsid assembly and serves an essential function during the final stages of the DNA packaging process.


Subject(s)
Capsid Proteins/physiology , Capsid/ultrastructure , Nucleopolyhedroviruses/physiology , Transcription Factors/physiology , Viral Proteins/physiology , Amino Acid Substitution , Capsid/chemistry , Capsid Proteins/analysis , Capsid Proteins/genetics , DNA Packaging , DNA Replication , DNA, Viral/biosynthesis , Gene Deletion , Microscopy, Immunoelectron , Mutagenesis, Site-Directed , Mutation, Missense , Nucleopolyhedroviruses/ultrastructure , Transcription Factors/genetics , Viral Proteins/genetics , Virus Assembly
18.
Virology ; 344(1): 77-87, 2006 Jan 05.
Article in English | MEDLINE | ID: mdl-16364739

ABSTRACT

Although the Baculoviridae are a large and diverse family of viruses, they are united by a number of shared features that form the basis for their unique life cycle. These include the mechanism of cell entry, genome replication and processing, and late and very late gene transcription. In this review, the molecular systems that are conserved within the Baculoviridae and that are responsible these processes are described.


Subject(s)
Baculoviridae/physiology , Animals , Baculoviridae/genetics , DNA, Viral/biosynthesis , Genes, Viral/physiology , Nucleocapsid/biosynthesis , Transcription, Genetic , Viral Proteins/physiology , Virus Replication
19.
Virology ; 331(1): 175-80, 2005 Jan 05.
Article in English | MEDLINE | ID: mdl-15582664

ABSTRACT

In a previous study, the DNA polymerase gene (dnapol) of Autographa californica multiple nucleopolyhedrovirus (AcMNPV) was identified as one of six genes required for plasmid replication in a transient replication assay (M. Kool, C. Ahrens, R.W. Goldbach, G.F. Rohrmann, J.M. Vlak, Identification of genes involved in DNA replication of the Autographa californica, Proc. Natl. Acad. Sci. U.S.A. 91, (1994) 11212-11216); however, another study based on a similar approach reported that the virally encoded polymerase was only stimulatory (A. Lu, L.K. Miller, The roles of 18 baculovirus late expression factor genes in transcription and DNA replication, J. Virol. 69, (1995) 975-982). To reconcile the conflicting data and determine if the AcMNPV DNA polymerase is required for viral DNA replication during the course of an infection, a dnapol-null virus was generated using bacmid technology. To detect viral DNA replication, a highly sensitive assay was designed based on real-time PCR and SYBR green chemistry. Our results indicate that a bacmid in which the dnapol ORF was deleted is unable to replicate its DNA when transfected into Spodoptera frugiperda (Sf-9) cells, although when the dnapol ORF was introduced into the polyhedrin (polh) locus, this repaired virus could propagate at levels similar to the control virus. These results confirm that the AcMNPV-encoded DNA polymerase is required for viral DNA replication and the host DNA polymerases cannot substitute for the viral enzyme in this process.


Subject(s)
DNA-Directed DNA Polymerase/genetics , Nucleopolyhedroviruses/genetics , Virus Replication/genetics , Animals , Cells, Cultured , DNA Replication/physiology , DNA, Viral/physiology , DNA-Directed DNA Polymerase/physiology , Genes, Viral , Mutation , Nucleopolyhedroviruses/physiology , Spodoptera , Virus Replication/physiology
20.
J Virol ; 78(19): 10650-6, 2004 Oct.
Article in English | MEDLINE | ID: mdl-15367632

ABSTRACT

The Autographa californica multiple nucleocapsid nucleopolyhedrovirus (AcMNPV) alkaline nuclease (AN) associates with the baculovirus single-stranded DNA binding protein LEF-3 and possesses both a 5'-->3' exonuclease and an endonuclease activity. These activities are thought to be involved in DNA recombination and replication. To investigate the role of AN in AcMNPV replication, the lambda Red system was used to replace the an open reading frame with a chloramphenicol acetyltransferase gene (cat) and a bacmid containing the AcMNPV genome in Escherichia coli. The AcMNPV an knockout bacmid (vAcAN-KO/GUS) was unable to propagate in Sf9 cells, although an an-rescued bacmid (vAcAN-KO/GUS-Res) propagated normally. In addition, the mutant did not appear to produce budded virions. These data indicated that an is an essential baculovirus gene. Slot blot and DpnI assays of DNA replication in Sf9 cells transfected with vAcAN-KO/GUS, vAcAN-KO/GUS-Res, and a wild-type bacmid showed that the vAcAN-KO/GUS bacmid was able to replicate to levels similar to those seen with the vAcAN-KO/GUS-Res and wild-type bacmids at early stages posttransfection. However, at later time points DNA did not accumulate to the levels seen with the repaired or wild-type bacmids. Northern analysis of Sf9 cells transfected with bacmid vAcAN-KO/GUS showed that transcription of late and very late genes was lower at later times posttransfection relative to the results seen with wild-type and vAcAN-KO/GUS-Res bacmids. These data suggest that the an gene might be involved in the maturation of viral DNA or packaging of the DNA into virions.


Subject(s)
Gene Deletion , Nucleopolyhedroviruses/genetics , Ribonucleases/genetics , Ribonucleases/metabolism , Animals , Cell Line , DNA Replication/genetics , DNA Replication/physiology , DNA, Viral/analysis , DNA, Viral/biosynthesis , DNA-Binding Proteins , Escherichia coli , Gene Expression Regulation, Viral , Genes, Essential , Genes, Viral , Genetic Complementation Test , Nucleopolyhedroviruses/enzymology , RNA, Messenger/biosynthesis , RNA, Viral/biosynthesis , Spodoptera , Transcription, Genetic , Viral Plaque Assay , Virion/metabolism , Virus Replication
SELECTION OF CITATIONS
SEARCH DETAIL
...