Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Talanta ; 269: 125397, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38048682

ABSTRACT

Multilabel fluorescence imaging is essential for the visualization of complex systems, though a major challenge is the limited width of the useable spectral window. Here, we present a new method, exNEEMO, that enables per-pixel quantification of spectrally-overlapping fluorophores based on their light-induced dynamics, in a way that is compatible with a very broad range of timescales over which these dynamics may occur. Our approach makes use of intra-exposure modulation of the excitation light to distinguish the different emitters given their reference responses to this modulation. We use the approach to simultaneously image four green photochromic fluorescent proteins at the full spatial resolution of the imaging.

2.
Chem Commun (Camb) ; 59(57): 8810-8813, 2023 Jul 13.
Article in English | MEDLINE | ID: mdl-37377004

ABSTRACT

In this study, we develop a general analytical model of the photochromism of fluorescent proteins and apply it to spectroscopic measurements performed on six different labels. Our approach provides quantitative explanations for phenomena such as the existence of positive and negative switching, limitations in the photochromism contrast, and the fact that initial switching cycles may differ from subsequent ones. It also allows us to perform the very first measurement of all four isomerization quantum yields involved in the switching process.


Subject(s)
Coloring Agents , Green Fluorescent Proteins/chemistry , Luminescent Proteins/chemistry
4.
ACS Sens ; 7(10): 2920-2927, 2022 10 28.
Article in English | MEDLINE | ID: mdl-36162130

ABSTRACT

Biosensors based on Förster resonance energy transfer (FRET) have revolutionized cellular biology by allowing the direct measurement of biochemical processes in situ. Many genetically encoded sensors make use of fluorescent proteins that are limited in spectral versatility and that allow few ways to change the spectral properties once the construct has been created. In this work, we developed genetically encoded FRET biosensors based on the chemigenetic SNAP and HaloTag domains combined with matching organic fluorophores. We found that the resulting constructs can display comparable responses, kinetics, and reversibility compared to their fluorescent protein-based ancestors, but with the added advantage of spectral versatility, including the availability of red-shifted dye pairs. However, we also find that the introduction of these tags can alter the sensor readout, showing that careful validation is required before applying such constructs in practice. Overall, our approach delivers an innovative methodology that can readily expand the spectral variety and versatility of FRET-based biosensors.


Subject(s)
Biosensing Techniques , Fluorescence Resonance Energy Transfer , Fluorescence Resonance Energy Transfer/methods , Biosensing Techniques/methods , Fluorescent Dyes/chemistry , Kinetics
5.
Nat Commun ; 13(1): 1850, 2022 04 06.
Article in English | MEDLINE | ID: mdl-35387971

ABSTRACT

Genetically-encoded biosensors based on a single fluorescent protein are widely used to visualize analyte levels or enzymatic activities in cells, though usually to monitor relative changes rather than absolute values. We report photochromism-enabled absolute quantification (PEAQ) biosensing, a method that leverages the photochromic properties of biosensors to provide an absolute measure of the analyte concentration or activity. We develop proof-of-concept photochromic variants of the popular GCaMP family of Ca2+ biosensors, and show that these can be used to resolve dynamic changes in the absolute Ca2+ concentration in live cells. We also develop intermittent quantification, a technique that combines absolute aquisitions with fast fluorescence acquisitions to deliver fast but fully quantitative measurements. We also show how the photochromism-based measurements can be expanded to situations where the absolute illumination intensities are unknown. In principle, PEAQ biosensing can be applied to other biosensors with photochromic properties, thereby expanding the possibilities for fully quantitative measurements in complex and dynamic systems.


Subject(s)
Biosensing Techniques , Biosensing Techniques/methods , Fluorescence Resonance Energy Transfer , Fluorescent Dyes , Ionophores , Light , Proteins
6.
Biomed Opt Express ; 12(7): 4414-4422, 2021 Jul 01.
Article in English | MEDLINE | ID: mdl-34457422

ABSTRACT

We present a modular implementation of structured illumination microscopy (SIM) that is fast, largely self-contained and that can be added onto existing fluorescence microscopes. Our strategy, which we call HIT-SIM, can theoretically deliver well over 50 super-resolved images per second and is readily compatible with existing acquisition software packages. We provide a full technical package consisting of schematics, a list of components and an alignment scheme that provides detailed specifications and assembly instructions. We illustrate the performance of the instrument by imaging optically large samples containing sequence-specifically stained DNA fragments.

7.
Biomed Opt Express ; 12(5): 2617-2630, 2021 May 01.
Article in English | MEDLINE | ID: mdl-34123492

ABSTRACT

Super-resolution optical fluctuation imaging (SOFI) is a well-known super-resolution technique appreciated for its versatility and broad applicability. However, even though an extended theoretical description is available, it is still not fully understood how the interplay between different experimental parameters influences the quality of a SOFI image. We investigated the relationship between five experimental parameters (measurement time, on-time t on, off-time t off, probe brightness, and out of focus background) and the quality of the super-resolved images they yielded, expressed as Signal to Noise Ratio (SNR). Empirical relationships were modeled for second- and third-order SOFI using data simulated according to a D-Optimal design of experiments, which is an ad-hoc design built to reduce the experimental load when the total number of trials to be conducted becomes too high for practical applications. This approach proves to be more reliable and efficient for parameter optimization compared to the more classical parameter by parameter approach. Our results indicate that the best image quality is achieved for the fastest emitter blinking (lowest t on and t off), lowest background level, and the highest measurement duration, while the brightness variation does not affect the quality in a statistically significant way within the investigated range. However, when the ranges spanned by the parameters are constrained, a different set of optimal conditions may arise. For example, for second-order SOFI, we identified situations in which the increase of t off can be beneficial to SNR, such as when the measurement duration is long enough. In general, optimal values of t on and t off have been found to be highly dependent from each other and from the measurement duration.

8.
Nat Commun ; 12(1): 2005, 2021 03 31.
Article in English | MEDLINE | ID: mdl-33790271

ABSTRACT

Förster resonant energy transfer (FRET) is a powerful mechanism to probe associations in situ. Simultaneously performing more than one FRET measurement can be challenging due to the spectral bandwidth required for the donor and acceptor fluorophores. We present an approach to distinguish overlapping FRET pairs based on the photochromism of the donor fluorophores, even if the involved fluorophores display essentially identical absorption and emission spectra. We develop the theory underlying this method and validate our approach using numerical simulations. To apply our system, we develop rsAKARev, a photochromic biosensor for cAMP-dependent protein kinase (PKA), and combine it with the spectrally-identical biosensor EKARev, a reporter for extracellular signal-regulated kinase (ERK) activity, to deliver simultaneous readout of both activities in the same cell. We further perform multiplexed PKA, ERK, and calcium measurements by including a third, spectrally-shifted biosensor. Our work demonstrates that exploiting donor photochromism in FRET can be a powerful approach to simultaneously read out multiple associations within living cells.


Subject(s)
Cyclic AMP-Dependent Protein Kinases/metabolism , Fluorescence Resonance Energy Transfer/methods , Fluorescent Dyes/chemistry , Luminescent Proteins/chemistry , Algorithms , Animals , Biosensing Techniques/methods , COS Cells , Chlorocebus aethiops , HEK293 Cells , HeLa Cells , Humans , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Microscopy, Fluorescence/methods , Time-Lapse Imaging/methods
9.
Sci Rep ; 11(1): 7569, 2021 04 07.
Article in English | MEDLINE | ID: mdl-33828326

ABSTRACT

Sub-diffraction or super-resolution fluorescence imaging allows the visualization of the cellular morphology and interactions at the nanoscale. Statistical analysis methods such as super-resolution optical fluctuation imaging (SOFI) obtain an improved spatial resolution by analyzing fluorophore blinking but can be perturbed by the presence of non-stationary processes such as photodestruction or fluctuations in the illumination. In this work, we propose to use Whittaker smoothing to remove these smooth signal trends and retain only the information associated to independent blinking of the emitters, thus enhancing the SOFI signals. We find that our method works well to correct photodestruction, especially when it occurs quickly. The resulting images show a much higher contrast, strongly suppressed background and a more detailed visualization of cellular structures. Our method is parameter-free and computationally efficient, and can be readily applied on both two-dimensional and three-dimensional data.

10.
mSphere ; 6(2)2021 03 17.
Article in English | MEDLINE | ID: mdl-33731469

ABSTRACT

Fluorescence microscopy is a standard research tool in many fields, although collecting reliable images can be difficult in systems characterized by low expression levels and/or high background fluorescence. We present the combination of a photochromic fluorescent protein and stochastic optical fluctuation imaging (SOFI) to deliver suppression of the background fluorescence. This strategy makes it possible to resolve lowly or endogenously expressed proteins, as we demonstrate for Gcn5, a histone acetyltransferase required for complete virulence, and Erg11, the target of the azole antifungal agents in the fungal pathogen Candida albicans We expect that our method can be readily used for sensitive fluorescence measurements in systems characterized by high background fluorescence.IMPORTANCE Understanding the spatial and temporal organization of proteins of interest is key to unraveling cellular processes and identifying novel possible antifungal targets. Only a few therapeutic targets have been discovered in Candida albicans, and resistance mechanisms against these therapeutic agents are rapidly acquired. Fluorescence microscopy is a valuable tool to investigate molecular processes and assess the localization of possible antifungal targets. Unfortunately, fluorescence microscopy of C. albicans suffers from extensive autofluorescence. In this work, we present the use of a photochromic fluorescent protein and stochastic optical fluctuation imaging to enable the imaging of lowly expressed proteins in C. albicans through the suppression of autofluorescence. This method can be applied in C. albicans research or adapted for other fungal systems, allowing the visualization of intricate processes.


Subject(s)
Candida albicans/chemistry , Candida albicans/genetics , Fungal Proteins/genetics , Microscopy, Fluorescence/methods , Optical Imaging/methods , Candida albicans/metabolism , Fungal Proteins/metabolism
11.
Angew Chem Int Ed Engl ; 60(18): 10073-10081, 2021 04 26.
Article in English | MEDLINE | ID: mdl-33543524

ABSTRACT

Anisotropic environments can drastically alter the spectroscopy and photochemistry of molecules, leading to complex structure-function relationships. We examined this using fluorescent proteins as easy-to-modify model systems. Starting from a single scaffold, we have developed a range of 27 photochromic fluorescent proteins that cover a broad range of spectroscopic properties, including the determination of 43 crystal structures. Correlation and principal component analysis confirmed the complex relationship between structure and spectroscopy, but also allowed us to identify consistent trends and to relate these to the spatial organization. We find that changes in spectroscopic properties can come about through multiple underlying mechanisms, of which polarity, hydrogen bonding and presence of water molecules are key modulators. We anticipate that our findings and rich structure/spectroscopy dataset can open opportunities for the development and evaluation of new and existing protein engineering methods.


Subject(s)
Luminescent Proteins/chemistry , Hydrogen Bonding , Luminescent Proteins/genetics , Models, Molecular , Protein Conformation
12.
Biophys Rep (N Y) ; 1(2): 100026, 2021 Dec 08.
Article in English | MEDLINE | ID: mdl-36425462

ABSTRACT

Multicolor fluorescence imaging is an excellent method for the simultaneous visualization of multiple structures, although it is limited by the available spectral window. More labels can be measured by distinguishing these on properties, such as their fluorescence dynamics, but usually these dynamics must be directly resolvable by the instrument. We propose an approach to distinguish emitters over a much broader range of light-induced dynamics by combining fast modulation of the light source with the detection of the time-integrated fluorescence. We demonstrate our method by distinguishing four spectrally overlapping photochromic fluorophores within Escherichia coli bacteria, showing that we can accurately classify all four probes by acquiring just two to four fluorescence images. Our strategy expands the range of probes and processes that can be used for fluorescence multiplexing.

13.
Biomed Opt Express ; 11(2): 636-648, 2020 Feb 01.
Article in English | MEDLINE | ID: mdl-32133218

ABSTRACT

Super-resolution fluorescence imaging techniques allow optical imaging of specimens beyond the diffraction limit of light. Super-resolution optical fluctuation imaging (SOFI) relies on computational analysis of stochastic blinking events to obtain a super-resolved image. As with some other super-resolution methods, this strong dependency on computational analysis can make it difficult to gauge how well the resulting images reflect the underlying sample structure. We herein report SOFIevaluator, an unbiased and parameter-free algorithm for calculating a set of metrics that describes the quality of super-resolution fluorescence imaging data for SOFI. We additionally demonstrate how SOFIevaluator can be used to identify fluorescent proteins that perform well for SOFI imaging under different imaging conditions.

14.
Opt Express ; 27(18): 25749-25766, 2019 Sep 02.
Article in English | MEDLINE | ID: mdl-31510441

ABSTRACT

Super-resolution optical fluctuation imaging (SOFI) provides super-resolution (SR) fluorescence imaging by analyzing fluctuations in the fluorophore emission. The technique has been used both to acquire quantitative SR images and to provide SR biosensing by monitoring changes in fluorophore blinking dynamics. Proper analysis of such data relies on a fully quantitative model of the imaging. However, previous SOFI imaging models made several assumptions that can not be realized in practice. In this work we address these limitations by developing and verifying a fully quantitative model that better approximates real-world imaging conditions. Our model shows that (i) SOFI images are free of bias, or can be made so, if the signal is stationary and fluorophores blink independently, (ii) allows a fully quantitative description of the link between SOFI imaging and probe dynamics, and (iii) paves the way for more advanced SOFI image reconstruction by offering a computationally fast way to calculate SOFI images for arbitrary probe, sample and instrumental properties.

15.
Int J Mol Sci ; 18(9)2017 Sep 20.
Article in English | MEDLINE | ID: mdl-28930199

ABSTRACT

Reversibly switchable fluorescent proteins (RSFPs) enable advanced fluorescence imaging, though the performance of this imaging crucially depends on the properties of the labels. We report on the use of an existing small binding peptide, named Enhancer, to modulate the spectroscopic properties of the recently developed rsGreen series of RSFPs. Fusion constructs of Enhancer with rsGreen1 and rsGreenF revealed an increased molecular brightness and pH stability, although expression in living E. coli or HeLa cells resulted in a decrease of the overall emission. Surprisingly, Enhancer binding also increased off-switching speed and resistance to switching fatigue. Further investigation suggested that the RSFPs can interconvert between fast- and slow-switching emissive states, with the overall protein population gradually converting to the slow-switching state through irradiation. The Enhancer modulates the spectroscopic properties of both states, but also preferentially stabilizes the fast-switching state, supporting the increased fatigue resistance. This work demonstrates how the photo-physical properties of RSFPs can be influenced by their binding to other small proteins, which opens up new horizons for applications that may require such modulation. Furthermore, we provide new insights into the photoswitching kinetics that should be of general consideration when developing new RSFPs with improved or different photochromic properties.


Subject(s)
Luminescent Proteins/metabolism , Peptides/metabolism , Recombinant Fusion Proteins/metabolism , Algorithms , Amino Acid Sequence , Fluorescence , Green Fluorescent Proteins/chemistry , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , HeLa Cells , Humans , Kinetics , Luminescent Proteins/chemistry , Luminescent Proteins/genetics , Microscopy, Fluorescence , Peptides/genetics , Recombinant Fusion Proteins/genetics , Spectrophotometry
16.
Sci Rep ; 7(1): 10470, 2017 09 05.
Article in English | MEDLINE | ID: mdl-28874717

ABSTRACT

Super-resolution optical fluctuation imaging overcomes the diffraction limit by analyzing fluctuations in the fluorophore emission. A key assumption of the imaging is that the fluorophores are independent, though this is invalidated in the presence of photodestruction. In this work, we evaluate the effect of photodestruction on SOFI imaging using theoretical considerations and computer simulations. We find that photodestruction gives rise to an additional signal that does not present an easily interpretable view of the sample structure. This additional signal is strong and the resulting images typically exhibit less noise. Accordingly, these images may be mis-interpreted as being more visually pleasing or more informative. To address this uncertainty, we develop a procedure that can robustly estimate to what extent any particular experiment is affected by photodestruction. We also develop a detailed assessment methodology and use it to evaluate the performance of several correction algorithms. We identify two approaches that can correct for the presence of even strong photodestruction, one of which can be implemented directly in the SOFI calculation software.

17.
Sci Rep ; 7: 44665, 2017 03 23.
Article in English | MEDLINE | ID: mdl-28333166

ABSTRACT

Live-cell super-resolution fluorescence imaging is becoming commonplace for exploring biological systems, though sample dynamics can affect the imaging quality. In this work we evaluate the effect of probe diffusion on super-resolution optical fluctuation imaging (SOFI), using a theoretical model and numerical simulations based on the imaging of live cells labelled with photochromic fluorescent proteins. We find that, over a range of physiological conditions, fluorophore diffusion results in a change in the amplitude of the SOFI signal. The magnitude of this change is approximately proportional to the on-time ratio of the fluorophores. However, for photochromic fluorescent proteins this effect is unlikely to present a significant distortion in practical experiments in biological systems. Due to this lack of distortions, probe diffusion strongly enhances the SOFI imaging by avoiding spatial undersampling caused by the limited labeling density.


Subject(s)
Fluorescent Dyes/chemistry , Microscopy, Fluorescence/methods , Optical Imaging/methods , Proteins/metabolism , Animals , Diffusion , Eukaryotic Cells/metabolism , Eukaryotic Cells/ultrastructure , Fluorescent Dyes/metabolism , Humans , Models, Chemical , Proteins/chemistry , Staining and Labeling/methods
18.
Nat Commun ; 7: 13693, 2016 12 19.
Article in English | MEDLINE | ID: mdl-27991512

ABSTRACT

Live-cell imaging of focal adhesions requires a sufficiently high temporal resolution, which remains a challenge for super-resolution microscopy. Here we address this important issue by combining photoactivated localization microscopy (PALM) with super-resolution optical fluctuation imaging (SOFI). Using simulations and fixed-cell focal adhesion images, we investigate the complementarity between PALM and SOFI in terms of spatial and temporal resolution. This PALM-SOFI framework is used to image focal adhesions in living cells, while obtaining a temporal resolution below 10 s. We visualize the dynamics of focal adhesions, and reveal local mean velocities around 190 nm min-1. The complementarity of PALM and SOFI is assessed in detail with a methodology that integrates a resolution and signal-to-noise metric. This PALM and SOFI concept provides an enlarged quantitative imaging framework, allowing unprecedented functional exploration of focal adhesions through the estimation of molecular parameters such as fluorophore densities and photoactivation or photoswitching kinetics.


Subject(s)
Cell Adhesion/physiology , Fibroblasts/physiology , Microscopy/methods , Animals , Mice , Paxillin/chemistry , Paxillin/genetics , Paxillin/metabolism , Rats , Staining and Labeling , Time Factors
19.
PLoS One ; 11(9): e0161602, 2016.
Article in English | MEDLINE | ID: mdl-27583365

ABSTRACT

Super-resolution optical fluctuation imaging (SOFI) allows one to perform sub-diffraction fluorescence microscopy of living cells. By analyzing the acquired image sequence with an advanced correlation method, i.e. a high-order cross-cumulant analysis, super-resolution in all three spatial dimensions can be achieved. Here we introduce a software tool for a simple qualitative comparison of SOFI images under simulated conditions considering parameters of the microscope setup and essential properties of the biological sample. This tool incorporates SOFI and STORM algorithms, displays and describes the SOFI image processing steps in a tutorial-like fashion. Fast testing of various parameters simplifies the parameter optimization prior to experimental work. The performance of the simulation tool is demonstrated by comparing simulated results with experimentally acquired data.


Subject(s)
Image Processing, Computer-Assisted/methods , Microscopy, Fluorescence , Software , Algorithms , HeLa Cells , Humans
20.
Biomed Opt Express ; 7(2): 467-80, 2016 Feb 01.
Article in English | MEDLINE | ID: mdl-26977356

ABSTRACT

Stochastic optical fluctuation imaging (SOFI) is a super-resolution fluorescence imaging technique that makes use of stochastic fluctuations in the emission of the fluorophores. During a SOFI measurement multiple fluorescence images are acquired from the sample, followed by the calculation of the spatiotemporal cumulants of the intensities observed at each position. Compared to other techniques, SOFI works well under conditions of low signal-to-noise, high background, or high emitter densities. However, it can be difficult to unambiguously determine the reliability of images produced by any superresolution imaging technique. In this work we present a strategy that enables the estimation of the variance or uncertainty associated with each pixel in the SOFI image. In addition to estimating the image quality or reliability, we show that this can be used to optimize the signal-to-noise ratio (SNR) of SOFI images by including multiple pixel combinations in the cumulant calculation. We present an algorithm to perform this optimization, which automatically takes all relevant instrumental, sample, and probe parameters into account. Depending on the optical magnification of the system, this strategy can be used to improve the SNR of a SOFI image by 40% to 90%. This gain in information is entirely free, in the sense that it does not require additional efforts or complications. Alternatively our approach can be applied to reduce the number of fluorescence images to meet a particular quality level by about 30% to 50%, strongly improving the temporal resolution of SOFI imaging.

SELECTION OF CITATIONS
SEARCH DETAIL
...