Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
2.
Dalton Trans ; 48(39): 14758-14768, 2019 Oct 07.
Article in English | MEDLINE | ID: mdl-31549711

ABSTRACT

In the lanthanide series, Eu3+ is most easily reduced to its divalent state. Reduction of Eu3+ has been studied extensively in aqueous media that are insensitive to reducing conditions. Recently, it has been reported that reduction of Eu3+ is also feasible in aqueous nitrate solutions and that Eu2+ remained sufficiently stable in these media to conduct separation experiments. However, additional fundamental research on the reduction efficiency of Eu3+ and stability of Eu2+ in these media has not been reported yet. In this paper, cyclic voltammetry, magnetic susceptibility measurements, UV-vis absorption spectroscopy and X-ray absorption near edge structure (XANES) spectroscopy were used to gain more insights into the reduction of Eu3+ in aqueous nitrate media. Within the parameters used in this work, near-quantitative reduction of Eu3+ could be achieved within 120 min in highly concentrated nitrate salt solutions, using both chemical and electrochemical reduction techniques. Moreover, Eu2+ was remarkably stable in these solutions, showing just a small percentage of back-oxidation after 5 h in a sealed measurement cell.

3.
Inorg Chem ; 58(18): 12289-12301, 2019 Sep 16.
Article in English | MEDLINE | ID: mdl-31452374

ABSTRACT

The metal extraction mechanism of basic extractants is typically described as an anion exchange process, but this mechanism does not correctly explain all observations. This paper introduces a novel model for the extraction of metals by basic extractants from chloride media supported by experimental data on methyltrioctylammonium chloride and Aliquat 336 chloride systems. This model relies on the hypothesis that the metal species least stabilized in the aqueous phase by hydration (i.e., the metal species with the lowest charge density) is extracted more efficiently than the more water stabilized species (i.e., species with higher charge densities). Once it is transferred to the organic phase, the extracted species can undergo further Lewis acid-base adduct formation reactions with the chloride anions available in the organic phase to form negatively charged chloro complexes, which than associate with the organic cations. Salting-out agents influence the extraction, most likely by decreasing the concentration of free water molecules, which destabilizes the metal complex in the aqueous phase. The evidence provided includes (1) the link between extraction and transition-metal speciation, (2) the trend in extraction efficiency as a function of the concentration of different salting-out agents, and (3) the behavior of HCl in the extraction system. The proposed extraction model better explains the experimental observations in comparison to the anion exchange model and allows the prediction of optimal conditions for metal extractions and separations a priori, by selecting the most suitable salting-out agent and its concentration.

4.
J Chem Phys ; 148(19): 193817, 2018 May 21.
Article in English | MEDLINE | ID: mdl-30307226

ABSTRACT

A combination of X-ray photoelectron spectroscopy and near edge X-ray absorption fine structure spectroscopy has been used to provide an experimental measure of nitrogen atomic charges in nine ionic liquids (ILs). These experimental results are used to validate charges calculated with three computational methods: charges from electrostatic potentials using a grid-based method (ChelpG), natural bond orbital population analysis, and the atoms in molecules approach. By combining these results with those from a previous study on sulfur, we find that ChelpG charges provide the best description of the charge distribution in ILs. However, we find that ChelpG charges can lead to significant conformational dependence and therefore advise that small differences in ChelpG charges (<0.3 e) should be interpreted with care. We use these validated charges to provide physical insight into nitrogen atomic charges for the ILs probed.

5.
Dalton Trans ; 47(14): 4975-4986, 2018 Apr 03.
Article in English | MEDLINE | ID: mdl-29557463

ABSTRACT

Cobalt(ii)-containing ionic liquids were synthesized using N,N-dimethylformamide, N-methylpyrrolidone (NMP), dimethylsulfoxide (DMSO), N,N-dimethylacetamide (DMAc), pyridine-N-oxide (py-O), 1,10-phenanthroline (phen), ethylenediamine (en) and dimethylimidazolidinone (DMI) as ligands. The weakly coordinating bis(trifluoromethylsulfonyl)imide (Tf2N-) was used as a counter anion. Several compounds had a melting temperature below 100 °C, and the compound [Co(DMAc)6][Tf2N]2 was liquid at room temperature, with a viscosity of only 18 mPa s at 80 °C. Several compounds were recrystallized to give high quality single crystals and their crystal structures were determined. EXAFS measurements were performed on [Co(DMAc)6][Tf2N]2 at different temperatures and it was observed that the [Co(DMAc)6]2+ ion partially dissociated at higher temperatures, which explains the temperature-dependent color change (thermochromism). The electrochemical properties of the compounds with the lowest melting points were also investigated. Adherent, crack-free metallic cobalt layers could be electrodeposited from [Co(DMAc)6][Tf2N]2, [Co(DMI)6][Tf2N]2 and [Co(NMP)6][Tf2N]2. From the first two, black deposits consisting of micrometer-sized needles were obtained, whereas the latter resulted in a dull grey cobalt layer consisting of micrometer-sized cobalt spheres. The Co(iii)/Co(ii) redox couple was not found to occur in any compound with an O-donor ligand, but the Co(iii)/Co(ii) redox couple was found to be quasi-reversible for [Co(phen)3][Tf2N]2 dissolved in [BMP][Tf2N].

6.
Chem Commun (Camb) ; 54(5): 475-478, 2018 Jan 11.
Article in English | MEDLINE | ID: mdl-29260154

ABSTRACT

Ionic liquids (ILs) with trichloride anions ([Cl3]-) combined with different cations were synthesised by bringing chlorine gas into contact with the corresponding chloride (Cl-) ILs at room temperature. These trichloride ILs safely store chlorine and are useful as oxidising agents for dissolution of various metals and alloys under mild conditions.

7.
RSC Adv ; 8(17): 9299-9310, 2018 Feb 28.
Article in English | MEDLINE | ID: mdl-35541845

ABSTRACT

Ionic liquids are largely used to leach metals from primary (ores) and secondary sources (end-of-life products). However, dry ionic liquids with a carboxylic function on the cation have not yet been used to leach metals at temperature above 100 °C and under atmospheric pressure. The ionic liquid betainium bis(trifluoromethylsulfonyl)imide, [Hbet][Tf2N], was used in the dry state to recover neodymium, dysprosium and cobalt from NdFeB magnets and NdFeB production scrap. The magnets and the scrap were crushed, milled and roasted before being leached above 100 °C. Recovery efficiencies below 10% and a lack of selectivity for all the parameters tested pointed to the importance of water in the dissolution process. The influence of the viscosity of the ionic liquid and the composition of the metal oxides after roasting was investigated as well. Although the dissolution of pure metal oxides was faster than the dissolution of the magnets, the low leaching efficiencies could not be attributed to the composition and crystal structure of the samples, since magnets roasted with the same protocol have already been successfully leached in the past, albeit in the presence of water. The role of water on the mass transfer and on the coordination of the metals was studied by viscometry and by spectroscopic methods, respectively. It is shown that for leaching of rare earths with [Hbet][Tf2N], the presence of ligands such as water is mandatory to saturate the first coordination sphere of the dissolved rare-earth ions. This paper provides new insights in the dissolution mechanism of metal oxides by [Hbet][Tf2N] at leaching temperatures higher than those typically used in hydrometallurgical leaching processes.

8.
RSC Adv ; 8(60): 34754-34763, 2018 10 04.
Article in English | MEDLINE | ID: mdl-35548638

ABSTRACT

Despite its benefits, the extraction of rare earths (REEs) from chloride solutions with neutral or basic extractants is not efficient, so that separation is currently carried out by using acidic extractants. This work aims to improve this process by replacing the conventional molecular diluents in the organic phase by ionic liquids (ILs) which contain coordinating anions. The extraction of La(iii), Ce(iii) and Pr(iii) from concentrated chloride solutions was tested with a quaternary ammonium and a phosphonium nitrate IL extractant. Dissolution of a trialkylphosphine oxide neutral extractant (Cyanex 923) in the nitrate ILs changed the preference of the organic phase from lighter to heavier REE and increased the overall extraction efficiency and the loading capacity of the organic phase. An increase of the CaCl2 concentration in the feed solution resulted in higher extraction efficiencies, due to a lower activity of water and hence to a poorer hydration of the REE ions. In that respect, chloride ions were not coordinating to the REE ion after extraction from concentrated chloride solutions. To achieve selectivity, one should fine-tune the loading by varying the CaCl2 and/or Cyanex 923 concentrations. Adjustment of the CaCl2 concentration in the feed and stripping solutions is essential for the separation of mixtures of REE. However, and unlike in the case of acidic extractants, no control of equilibrium pH is required. The split-anion extraction offers the possibility to separate mixtures of REEs in different groups without having to change the chloride feed solution. It leads to safer and environmentally friendlier extraction processes by (1) using solvents that are not volatile, not flammable and do no accumulate static electricity, (2) consuming no acids or alkali, (3) easy stripping with water and (4) avoidance to create nitrate-containing effluents.

9.
RSC Adv ; 8(56): 32044-32054, 2018 Sep 17.
Article in English | MEDLINE | ID: mdl-30713684

ABSTRACT

A speciation study was carried out for lanthanide complexes formed in the organic phase after solvent extraction with quaternary ammonium and phosphonium nitrate extractants. These extractants are liquid at room temperature and were applied in their undiluted form. A comparison was made between the quaternary compound trihexyl(tetradecyl)phosphonium nitrate, the nitrate form of the commercial extractant Cyphos IL 101, and Aliquat 336 nitrate, the nitrate form of the commercial trialkylmethylammonium chloride extractant Aliquat 336 (alkyl = mixture of C8 and C10 chains). The structures of the lanthanide complexes across the entire lanthanide series (with the exception of promethium) were determined by a combination of solvent extraction techniques, FTIR, NMR, high-resolution steady-state luminescence spectroscopy, luminescence life time measurements, elemental analysis and EXAFS spectroscopy. The results suggest that the lanthanide ions form an anionic nitrate complex in the organic phase by coordinating with five bidentate nitrate ligands. Charge neutralization is provided by two counter cations of the extractant present in the outer coordination sphere of the complex. Furthermore, it is suggested that the pentanitrato complex is the sole lanthanide species that is formed in significant concentrations in the organic phase.

10.
Phys Chem Chem Phys ; 19(46): 31156-31167, 2017 Nov 29.
Article in English | MEDLINE | ID: mdl-29139509

ABSTRACT

Experimental near edge X-ray absorption fine structure (NEXAFS) spectra are reported for 12 ionic liquids (ILs) encompassing a range of chemical structures for both the sulfur 1s and nitrogen 1s edges and compared with time-dependent density functional theory (TD-DFT) calculations. The energy scales for the experimental data were carefully calibrated against literature data. Gas phase calculations were performed on lone ions, ion pairs and ion pair dimers, with a wide range of ion pair conformers considered. For the first time, it is demonstrated that TD-DFT is a suitable method for simulating NEXAFS spectra of ILs, although the number of ions included in the calculations and their conformations are important considerations. For most of the ILs studied, calculations on lone ions in the gas phase were sufficient to successfully reproduce the experimental NEXAFS spectra. However, for certain ILs - for example, those containing a protic ammonium cation - calculations on ion pairs were required to obtain a good agreement with experimental spectra. Furthermore, significant conformational dependence was observed for the protic ammonium ILs, providing insight into the predominant liquid phase cation-anion interactions. Among the 12 investigated ILs, we find that four have an excited state that is delocalised across both the cation and the anion, which has implications for any process that depends on the excited state, for example, radiolysis. Considering the collective experimental and theoretical data, we recommend that ion pairs should be the minimum number of ions used for the calculation of NEXAFS spectra of ILs.

11.
Dalton Trans ; 46(38): 12845-12855, 2017 Oct 03.
Article in English | MEDLINE | ID: mdl-28920993

ABSTRACT

Cobalt(ii)-containing liquid metal salts (LMS) with N-alkylimidazole ligands and bis(trifluoromethanesulfonyl)imide (bistriflimide, Tf2N-) or methanesulfonate (mesylate, OMs-) anions were synthesized and characterized. The chain length of the alkyl side chain on the imidazole ligand was varied. All compounds were characterized using CHN analysis, DSC and FTIR measurements. Single-crystal X-ray diffraction measurements were performed on six of the compounds for which single crystals of good quality could be obtained. All cobalt(ii) centers are six-coordinate with the N-alkylimidazole ligands in an octahedral configuration and the anions are non-coordinating. The same coordination environment was observed by EXAFS measurements on cobalt(ii) liquid metal salts in the liquid state. The electrochemical properties of the compounds with the lowest melting temperatures were investigated using cyclic voltammetry. It was found that part of the current was consumed in the electrodeposition of cobalt, whereas the other part of the current was consumed in the electrochemical formation of cobalt(0) nanoparticles.

12.
Dalton Trans ; 46(16): 5269-5278, 2017 Apr 19.
Article in English | MEDLINE | ID: mdl-28379269

ABSTRACT

Novel 1,2,3-triazolium ionic liquids with a high base stability were synthesized for use in solvent extraction of first-row transition elements and rare earths from chloride media. The synthesis of these ionic liquids makes use of a recently reported, metal-free multicomponent reaction that allows full substitution of the 1,2,3-triazolium skeleton. The physical and chemical properties of these ionic liquids are compared with those of a trisubstituted analog. Peralkylation of the 1,2,3-triazolium skeleton leads to ionic liquids with superior properties, such as low viscosity, low solubility in water and higher thermal and base stability. Iodide and thiocyanate ionic liquids with peralkylated cations were applied to the solvent extraction of metal ions, and their stability in alkaline media was exploited in the selective stripping of the metals from the loaded ionic liquid phase by alkaline solutions. EXAFS and Raman spectroscopy were performed to gain insight into the extraction mechanism. The applicability of these extraction systems was demonstrated in separations relevant for the recovery of metals from ores and end-of-life products: Fe(iii)/Cu(ii)/Zn(ii) (copper ores, brass scraps) and Fe(iii)/Nd(iii) (rare earth magnets).

13.
Dalton Trans ; 46(13): 4412-4421, 2017 Mar 27.
Article in English | MEDLINE | ID: mdl-28294262

ABSTRACT

Most metal extraction studies focus on the kinetics, the maximum loading and the extraction equilibrium, while structural information on the extracted complexes has been limited. This paper concerns the nature of the indium(iii) chloride complexes, present in the organic and aqueous phase during the solvent extraction of indium(iii) from an aqueous HCl solution by undiluted ionic liquids Cyphos® IL 101 and Aliquat® 336. In an aqueous HCl solution (0-12 M), indium(iii) exists as octahedral mixed complexes, [In(H2O)6-nCln]3-n (0 ≤ n ≤ 6). EXAFS and 115In NMR were used to characterize these species. The stoichiometric composition of the extracted complexes, which is estimated from viscosity and maximum loading studies and confirmed by EXAFS, is unaffected by the HCl concentration in the aqueous phase. Indium(iii) is present in the ionic liquid phase as the tetrahedral [InCl4]- complex. Based on the speciation results an extraction mechanism is proposed.

14.
Anal Chem ; 89(8): 4595-4603, 2017 04 18.
Article in English | MEDLINE | ID: mdl-28345877

ABSTRACT

Total reflection X-ray fluorescence (TXRF) is becoming more and more popular for elemental analysis in academia and industry. However, simplification of the procedures for analyzing samples with complex compositions and residual matrix effects is still needed. In this work, the effect of an inorganic (CaCl2) and an organic (tetraalkylphosphonium chloride) matrix on metals quantification by TXRF was investigated for liquid samples. The samples were spiked with up to 20 metals at concentrations ranging from 3 to 50 mg L-1 per element, including elements with spectral peaks near the peaks of the matrix elements or near the Raleigh and Compton scattering peaks of the X-ray source (molybdenum anode). The recovery rate (RR) and the relative standard deviation (RSD) were calculated to express the accuracy and the precision of the measured element concentrations. In samples with no matrix effects, good RRs are obtained regardless of the internal standard selected. However, in samples with moderate matrix content, the use of an optimum internal standard (OIS) at a concentration close to that of the analyte significantly improved the quantitative analysis. In samples with high concentrations of inorganic ions, using a Triton X-100 aqueous solution to dilute the sample during the internal standardization resulted in better RRs and lower RSDs compared to using only water. In samples with a high concentration of organic material, pure ethanol gave slightly better results than when a Triton X-100-ethanol solution was used for dilution. Compared to previous methods reported in the literature, the new sample-preparation method gave better accuracy, precision, and sensitivity for the elements tested. Sample dilution with an OIS and the surfactant Triton X-100 (inorganic media) or ethanol (organic media) is recommended for fast routine elemental determination in matrix containing samples, as it does not require special equipment, experimentally derived case-dependent mathematical corrections, or physicochemical removal of interfering elements.

15.
Dalton Trans ; 45(23): 9661-8, 2016 Jun 21.
Article in English | MEDLINE | ID: mdl-27220984

ABSTRACT

Aqueous waste streams of the metallurgical industry often contain considerable concentrations of metal salts. Previous research showed that the metal chloride salts of zinc(ii), manganese(ii) and iron(iii) can be recovered by solvent extraction using a sustainable and renewable fatty acid based ionic liquid as the extractant. In this paper, the extraction mechanism of Zn(ii), Co(ii) and Ni(ii) from chloride media has been studied systematically. The metal extraction performances of the precursors, sodium oleate and tetraoctylammonium chloride, were compared to the extraction performance of the ionic liquid tetraoctylammonium oleate. Slope analysis experiments were performed to determine the number of ionic liquid molecules involved in the extraction. The experimental data showed that Co(ii) and Ni(ii) were extracted in the pH range from 6 to 8 by the formation of negatively charged metal carboxylate complexes with tetraalkylammonium counter ions. In contrast, Zn(ii) gets extracted as a mixed metal chloride carboxylate anionic complex with tetraalkylammonium counter ions. This extraction mechanism was supported by EXAFS measurements.

16.
Chemistry ; 21(33): 11757-66, 2015 Aug 10.
Article in English | MEDLINE | ID: mdl-26178665

ABSTRACT

In a conventional solvent extraction system, metal ions are distributed between two immiscible phases, typically an aqueous and an organic phase. In this paper, the proof-of-principle is given for the distribution of metal ions between three immiscible phases, two ionic liquid phases with an aqueous phase in between them. Three-liquid-phase solvent extraction allows separation of a mixture of three metal ions in a single step, whereas at least two steps are required to separate three metals in the case of two-liquid-phase solvent extraction. In the triphasic system, the lower organic phase is comprised of the ionic liquid betainium- or choline bis(trifluoromethylsulfonyl)imide, whereas the upper organic phase is comprised of the ionic liquid trihexyl(tetradecyl)phosphonium bis(trifluoromethylsulfonyl)imide. The triphasic system was used for the separation of a mixture of tin(II), yttrium(III), and scandium(III) ions.

17.
Anal Chem ; 86(8): 3931-8, 2014 Apr 15.
Article in English | MEDLINE | ID: mdl-24628670

ABSTRACT

The determination and quantification of halide impurities in ionic liquids is highly important because halide ions can significantly influence the chemical and physical properties of ionic liquids. The use of impure ionic liquids in fundamental studies on solvent extraction or catalytic reactions can lead to incorrect experimental data. The detection of halide ions in solution by total reflection X-ray fluorescence (TXRF) has been problematic because volatile hydrogen halide (HX) compounds are formed when the sample is mixed with the acidic metal standard solution. The loss of HX during the drying step of the sample preparation procedure gives imprecise and inaccurate results. A new method based on an alkaline copper standard Cu(NH3)4(NO3)2 is presented for the determination of chloride, bromide, and iodide impurities in ionic liquids. The 1-butyl-3-methylimidazolium ([C4mim]) ionic liquids with the anions acetate ([C4mim][OAc]), nitrate ([C4mim][NO3]), trifluoromethanesulfonate ([C4mim][OTf]), and bis(trifluoromethylsulfonyl)imide ([C4mim][Tf2N]) were synthesized via a halide-free route and contaminated on purpose with known amounts of [C4mim]Cl, [C4mim]Br, [C4mim]I, or potassium halide salts in order to validate the new method and standard.

18.
Anal Chem ; 86(3): 1391-4, 2014 Feb 04.
Article in English | MEDLINE | ID: mdl-24387144

ABSTRACT

An accurate quantitative determination of halide ions X (X = Cl, Br, I) in aqueous solution by total reflection X-ray fluorescence (TXRF) is not possible using the traditional acidic internal standards. In general, the standard solutions are highly acidic (e.g., Ga(NO3)3 in HNO3) to avoid precipitation of hydroxides of the standard element and to obtain a stable and reliable standard. In acidic solutions, dissolved halide salts can exchange their cation for a proton. The resulting volatile HX compounds can evaporate during the drying procedure of the TXRF sample preparation. In this technical note, we show that an alkaline Cu(NH3)4(NO3)2 standard can be used for the determination of chlorine, bromine and iodine without facing problems of HX evaporation.

19.
Int J Mol Sci ; 14(11): 21353-77, 2013 Oct 28.
Article in English | MEDLINE | ID: mdl-24169434

ABSTRACT

Several fundamental extraction parameters such as the kinetics and loading were studied for a new type of metal solvent extraction system with ionic liquids. The binary mixture of the ionic liquid betainium bis(trifluoromethylsulfonyl)imide and water shows thermomorphic behavior with an upper critical solution temperature (UCST), which can be used to avoid the slower mass transfer due to the generally higher viscosity of ionic liquids. A less viscous homogeneous phase and mixing on a molecular scale are obtained when the mixture is heated up above 55 °C. The influence of the temperature, the heating and cooling times, were studied for the extraction of neodymium(III) with betaine. A plausible and equal extraction mechanism is proposed in bis(trifluoromethylsulfonyl)imide, nitrate, and chloride media. After stripping of the metals from the ionic liquid phase, a higher recovery of the ionic liquid was obtained by salting-out of the ionic liquid fraction lost by dissolution in the aqueous phase. The change of the upper critical solution temperature by the addition of HCl or betaine was investigated. In addition, the viscosity was measured below and above the UCST as a function of the temperature.


Subject(s)
Betaine/chemistry , Ionic Liquids/chemistry , Metals, Rare Earth/isolation & purification , Imides/chemistry , Liquid-Liquid Extraction , Metals, Rare Earth/chemistry , Sulfonamides/chemistry , Temperature , Viscosity , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...