Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 62
Filter
1.
Hum Brain Mapp ; 45(8): e26676, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38798131

ABSTRACT

Aphasia is a communication disorder that affects processing of language at different levels (e.g., acoustic, phonological, semantic). Recording brain activity via Electroencephalography while people listen to a continuous story allows to analyze brain responses to acoustic and linguistic properties of speech. When the neural activity aligns with these speech properties, it is referred to as neural tracking. Even though measuring neural tracking of speech may present an interesting approach to studying aphasia in an ecologically valid way, it has not yet been investigated in individuals with stroke-induced aphasia. Here, we explored processing of acoustic and linguistic speech representations in individuals with aphasia in the chronic phase after stroke and age-matched healthy controls. We found decreased neural tracking of acoustic speech representations (envelope and envelope onsets) in individuals with aphasia. In addition, word surprisal displayed decreased amplitudes in individuals with aphasia around 195 ms over frontal electrodes, although this effect was not corrected for multiple comparisons. These results show that there is potential to capture language processing impairments in individuals with aphasia by measuring neural tracking of continuous speech. However, more research is needed to validate these results. Nonetheless, this exploratory study shows that neural tracking of naturalistic, continuous speech presents a powerful approach to studying aphasia.


Subject(s)
Aphasia , Electroencephalography , Stroke , Humans , Aphasia/physiopathology , Aphasia/etiology , Aphasia/diagnostic imaging , Male , Female , Middle Aged , Stroke/complications , Stroke/physiopathology , Aged , Speech Perception/physiology , Adult , Speech/physiology
2.
Cortex ; 174: 149-163, 2024 05.
Article in English | MEDLINE | ID: mdl-38547813

ABSTRACT

Diffusion-weighted imaging studies in preschoolers have almost exclusively been done in the field of reading. As a result, virtually nothing is known about white matter tracts associated with individual differences in mathematics at this age. Studying the preschoolers' brain is crucial because it allows us to identify individual differences in brain anatomy without influences of formal mathematics and reading instruction. To fill this gap, we investigated for the first time before the start of formal school entry the associations between white matter tracts and precursors of mathematics and reading simultaneously. We also investigated whether these associations were specific to mathematics and to reading, or not. We focused on four bilateral white matter tracts (arcuate fasciculus (direct, anterior), inferior fronto-occipital fasciculus, inferior longitudinal fasciculus), which have been previously correlated with mathematical performance in older children and with reading performance in children of a similar age as the current study. Participants were 56 5-year-old children (Mage = 67 months; SD = 1.8), none of which received formal instruction. Our results showed an association between the bilateral inferior fronto-occipital fasciculus and precursors of mathematics (numerical ordering, numeral knowledge) and reading (phonological awareness, letter knowledge). Follow-up regression analyses revealed that the associations found with the inferior fronto-occipital fasciculus were neither specific to mathematics nor specific to reading. These findings suggest that, already before the start of formal schooling, the inferior fronto-occipital fasciculus might be related to the neural overlap between mathematics and reading. This overlap potentially reflects one of their many shared mechanisms, such as the reliance on phonological codes or the processing of visual symbols, and these mechanisms should be exploited in future studies.


Subject(s)
White Matter , Humans , Child, Preschool , Child , White Matter/diagnostic imaging , Reading , Brain , Diffusion Magnetic Resonance Imaging , Awareness
3.
Dev Sci ; 27(1): e13412, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37219071

ABSTRACT

Literacy acquisition is a complex process with genetic and environmental factors influencing cognitive and neural processes associated with reading. Previous research identified factors that predict word reading fluency (WRF), including phonological awareness (PA), rapid automatized naming (RAN), and speech-in-noise perception (SPIN). Recent theoretical accounts suggest dynamic interactions between these factors and reading, but direct investigations of such dynamics are lacking. Here, we investigated the dynamic effect of phonological processing and speech perception on WRF. More specifically, we evaluated the dynamic influence of PA, RAN, and SPIN measured in kindergarten (the year prior to formal reading instruction), first grade (the first year of formal reading instruction) and second grade on WRF in second and third grade. We also assessed the effect of an indirect proxy of family risk for reading difficulties using a parental questionnaire (Adult Reading History Questionnaire, ARHQ). We applied path modeling in a longitudinal sample of 162 Dutch-speaking children of whom the majority was selected to have an increased family and/or cognitive risk for dyslexia. We showed that parental ARHQ had a significant effect on WRF, RAN and SPIN, but unexpectedly not on PA. We also found effects of RAN and PA directly on WRF that were limited to first and second grade respectively, in contrast to previous research reporting pre-reading PA effects and prolonged RAN effects throughout reading acquisition. Our study provides important new insights into early prediction of later word reading abilities and into the optimal time window to target a specific reading-related subskill during intervention.


Subject(s)
Dyslexia , Reading , Child , Humans , Phonetics , Language , Cognition
4.
Cortex ; 167: 86-100, 2023 10.
Article in English | MEDLINE | ID: mdl-37542803

ABSTRACT

A growing body of neuroimaging evidence shows that white matter can change as a result of experience and structured learning. Although the majority of previous work has used diffusion MRI to characterize such changes in white matter, diffusion metrics offer limited biological specificity about which microstructural features may be driving white matter plasticity. Recent advances in myelin-specific MRI techniques offer a promising opportunity to assess the specific contribution of myelin in learning-related plasticity. Here we describe the application of such an approach to examine structural plasticity during an early intervention in preliterate children at risk for dyslexia. To this end, myelin water imaging data were collected before and after a 12-week period in (1) at-risk children following early literacy training (n = 13-24), (2) at-risk children engaging with other non-literacy games (n = 10-17) and (3) children without a risk receiving no training (n = 11-22). Before the training, regional risk-related differences were identified, showing higher myelin water fraction (MWF) in right dorsal white matter in at-risk children compared to the typical control group. Concerning intervention-specific effects, our results revealed an increase across left-hemispheric and right ventral MWF over the course of training in the at-risk children receiving early literacy training, but not in the at-risk active control group or the no-risk typical control group. Overall, our results provide support for the use of myelin water imaging as a sensitive tool to investigate white matter and offer a first indication of myelin plasticity in young children at the onset of literacy acquisition.


Subject(s)
Literacy , White Matter , Child , Humans , Child, Preschool , Myelin Sheath/chemistry , Learning , Diffusion Magnetic Resonance Imaging/methods , Magnetic Resonance Imaging/methods , White Matter/diagnostic imaging , Water/analysis
5.
Int J Lang Commun Disord ; 58(6): 2117-2130, 2023.
Article in English | MEDLINE | ID: mdl-37408507

ABSTRACT

BACKGROUND: Aphasia can affect the communication between the person with aphasia (PWA) and the communication partner (CP). It is therefore necessary to support both the PWA and their CPs. Communication partner training (CPT) focuses on training communication between dyads of whom one person has aphasia. Although there is increasing evidence supporting CPT as an effective intervention to improve communication and reduce the psychosocial consequences of stroke, implementation in clinical practice remains limited. AIM: To understand the mechanisms behind the practice-evidence gap currently hindering CPT implementation, this study investigated the role of (1) education, (2) concept knowledge, (3) work setting and (4) clinical experience in CPT. METHODS & PROCEDURES: Flemish speech and language therapists (SLTs) clinically involved in aphasia rehabilitation were surveyed online regarding CPT. Statistical analyses include descriptive statistics to report survey results and non-parametric group comparisons to investigate the role of the four variables on CPT. OUTCOMES & RESULTS: In this study 72 SLTs were included, of whom 73.61% indicated they deliver CPT but of whom only 43.10% indicated CP presence during therapy. The most frequently identified barriers to CPT delivery were lack of time and CPT-specific knowledge. Other barriers were lack of resources, work setting dependent factors, PWA or CP dependent factors, individual therapy to the PWA being of higher priority, existing CPT methods and interventions being perceived as unclear and feeling uncertain about CPT delivery. Concerning the role of the four variables on CPT delivery, neither education nor concept knowledge had a significant effect on CPT delivery. Work setting and clinical experience did, however, influence CPT delivery. More specifically, CPT delivery and CP presence were higher in the private practice (chronic phase) compared to the other three settings and experienced SLTs deliver CPT more often compared with less experienced SLTs. CONCLUSIONS & IMPLICATIONS: To reduce the practice-evidence gap, we suggest prioritising the two most frequently identified barriers, that is, lack of time and CPT-specific knowledge. To overcome the time barrier in CPT, we propose implementing automated natural speech analysis to reduce the workload. To enhance CPT-specific knowledge, speech and language therapy curricula should provide more in-depth theory and hands-on practice for CPT. In addition, increased awareness about CPT-specific methods is needed to further support clinical practice. WHAT THIS PAPER ADDS: What is already known on the subject Communication partner training (CPT) is an effective intervention to improve communication and reduce the psychosocial consequences of stroke. Despite this evidence base, a current practice-evidence gap exists. What this study adds This is the first study to characterise CPT delivery in a Flemish cohort of speech and language therapists (SLTs). In addition, on a more international perspective, few studies have investigated the role of education, concept knowledge, work setting and clinical experience in CPT. We found that neither education nor concept knowledge has a significant effect on CPT delivery. CPT delivery and communication partner presence are significantly higher in the private practice compared to the hospital, rehabilitation centre or nursing home settings. Experienced SLTs deliver CPT more often compared with less-experienced SLTs. The two most prominent reported barriers include lack of time and CPT-specific knowledge. What are the clinical implications of this work? This study suggests reducing the practice-evidence gap by alleviating the main barriers identified, that is, lack of time and CPT-specific knowledge. Time-barriers can be addressed by implementing automated natural speech analyses. We additionally advocate for more in-depth theory and hands-on practice for CPT in speech and language therapy curricula.


Subject(s)
Aphasia , Stroke , Humans , Language Therapy/methods , Speech , Aphasia/psychology , Speech Therapy/methods , Stroke/psychology
6.
Sci Rep ; 13(1): 11208, 2023 07 11.
Article in English | MEDLINE | ID: mdl-37433805

ABSTRACT

Acoustic and phonemic processing are understudied in aphasia, a language disorder that can affect different levels and modalities of language processing. For successful speech comprehension, processing of the speech envelope is necessary, which relates to amplitude changes over time (e.g., the rise times). Moreover, to identify speech sounds (i.e., phonemes), efficient processing of spectro-temporal changes as reflected in formant transitions is essential. Given the underrepresentation of aphasia studies on these aspects, we tested rise time processing and phoneme identification in 29 individuals with post-stroke aphasia and 23 healthy age-matched controls. We found significantly lower performance in the aphasia group than in the control group on both tasks, even when controlling for individual differences in hearing levels and cognitive functioning. Further, by conducting an individual deviance analysis, we found a low-level acoustic or phonemic processing impairment in 76% of individuals with aphasia. Additionally, we investigated whether this impairment would propagate to higher-level language processing and found that rise time processing predicts phonological processing performance in individuals with aphasia. These findings show that it is important to develop diagnostic and treatment tools that target low-level language processing mechanisms.


Subject(s)
Aphasia , Language Disorders , Humans , Aphasia/etiology , Acoustics , Cognition , Individuality
7.
Neuroimage ; 277: 120223, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37315772

ABSTRACT

Neural processing of the speech envelope is of crucial importance for speech perception and comprehension. This envelope processing is often investigated by measuring neural synchronization to sinusoidal amplitude-modulated stimuli at different modulation frequencies. However, it has been argued that these stimuli lack ecological validity. Pulsatile amplitude-modulated stimuli, on the other hand, are suggested to be more ecologically valid and efficient, and have increased potential to uncover the neural mechanisms behind some developmental disorders such a dyslexia. Nonetheless, pulsatile stimuli have not yet been investigated in pre-reading and beginning reading children, which is a crucial age for developmental reading research. We performed a longitudinal study to examine the potential of pulsatile stimuli in this age range. Fifty-two typically reading children were tested at three time points from the middle of their last year of kindergarten (5 years old) to the end of first grade (7 years old). Using electroencephalography, we measured neural synchronization to syllable rate and phoneme rate sinusoidal and pulsatile amplitude-modulated stimuli. Our results revealed that the pulsatile stimuli significantly enhance neural synchronization at syllable rate, compared to the sinusoidal stimuli. Additionally, the pulsatile stimuli at syllable rate elicited a different hemispheric specialization, more closely resembling natural speech envelope tracking. We postulate that using the pulsatile stimuli greatly increases EEG data acquisition efficiency compared to the common sinusoidal amplitude-modulated stimuli in research in younger children and in developmental reading research.


Subject(s)
Dyslexia , Speech Perception , Humans , Child , Child, Preschool , Longitudinal Studies , Acoustic Stimulation/methods , Reading , Electroencephalography
8.
J Neural Eng ; 20(2)2023 03 09.
Article in English | MEDLINE | ID: mdl-36812597

ABSTRACT

Objective.The human brain tracks the temporal envelope of speech, which contains essential cues for speech understanding. Linear models are the most common tool to study neural envelope tracking. However, information on how speech is processed can be lost since nonlinear relations are precluded. Analysis based on mutual information (MI), on the other hand, can detect both linear and nonlinear relations and is gradually becoming more popular in the field of neural envelope tracking. Yet, several different approaches to calculating MI are applied with no consensus on which approach to use. Furthermore, the added value of nonlinear techniques remains a subject of debate in the field. The present paper aims to resolve these open questions.Approach.We analyzed electroencephalography (EEG) data of participants listening to continuous speech and applied MI analyses and linear models.Main results.Comparing the different MI approaches, we conclude that results are most reliable and robust using the Gaussian copula approach, which first transforms the data to standard Gaussians. With this approach, the MI analysis is a valid technique for studying neural envelope tracking. Like linear models, it allows spatial and temporal interpretations of speech processing, peak latency analyses, and applications to multiple EEG channels combined. In a final analysis, we tested whether nonlinear components were present in the neural response to the envelope by first removing all linear components in the data. We robustly detected nonlinear components on the single-subject level using the MI analysis.Significance.We demonstrate that the human brain processes speech in a nonlinear way. Unlike linear models, the MI analysis detects such nonlinear relations, proving its added value to neural envelope tracking. In addition, the MI analysis retains spatial and temporal characteristics of speech processing, an advantage lost when using more complex (nonlinear) deep neural networks.


Subject(s)
Speech Perception , Humans , Acoustic Stimulation/methods , Speech Perception/physiology , Electroencephalography/methods , Brain/physiology , Auditory Perception , Speech/physiology
9.
Eur J Neurosci ; 57(3): 547-567, 2023 02.
Article in English | MEDLINE | ID: mdl-36518008

ABSTRACT

A growing number of studies has investigated temporal processing deficits in dyslexia. These studies largely focus on neural synchronization to speech. However, the importance of rise times for neural synchronization is often overlooked. Furthermore, targeted interventions, phonics-based and auditory, are being developed, but little is known about their impact. The current study investigated the impact of a 12-week tablet-based intervention. Children at risk for dyslexia received phonics-based training, either with (n = 31) or without (n = 31) auditory training, or engaged in active control training (n = 29). Additionally, neural synchronization and processing of rise times was longitudinally investigated in children with dyslexia (n = 26) and typical readers (n = 52) from pre-reading (5 years) to beginning reading age (7 years). The three time points in the longitudinal study correspond to intervention pre-test, post-test and consolidation, approximately 1 year after completing the intervention. At each time point neural synchronization was measured to sinusoidal stimuli and pulsatile stimuli with shortened rise times at syllable (4 Hz) and phoneme rates (20 Hz). Our results revealed no impact on neural synchronization at syllable and phoneme rate of the phonics-based and auditory training. However, we did reveal atypical hemispheric specialization at both syllable and phoneme rates in children with dyslexia. This was detected even before the onset of reading acquisition, pointing towards a possible causal rather than consequential mechanism in dyslexia. This study contributes to our understanding of the temporal processing deficits underlying the development of dyslexia, but also shows that the development of targeted interventions is still a work in progress.


Subject(s)
Dyslexia , Speech Perception , Child , Humans , Longitudinal Studies , Dyslexia/therapy , Reading , Speech
10.
Neuroimage ; 267: 119841, 2023 02 15.
Article in English | MEDLINE | ID: mdl-36584758

ABSTRACT

BACKGROUND: Older adults process speech differently, but it is not yet clear how aging affects different levels of processing natural, continuous speech, both in terms of bottom-up acoustic analysis and top-down generation of linguistic-based predictions. We studied natural speech processing across the adult lifespan via electroencephalography (EEG) measurements of neural tracking. GOALS: Our goals are to analyze the unique contribution of linguistic speech processing across the adult lifespan using natural speech, while controlling for the influence of acoustic processing. Moreover, we also studied acoustic processing across age. In particular, we focus on changes in spatial and temporal activation patterns in response to natural speech across the lifespan. METHODS: 52 normal-hearing adults between 17 and 82 years of age listened to a naturally spoken story while the EEG signal was recorded. We investigated the effect of age on acoustic and linguistic processing of speech. Because age correlated with hearing capacity and measures of cognition, we investigated whether the observed age effect is mediated by these factors. Furthermore, we investigated whether there is an effect of age on hemisphere lateralization and on spatiotemporal patterns of the neural responses. RESULTS: Our EEG results showed that linguistic speech processing declines with advancing age. Moreover, as age increased, the neural response latency to certain aspects of linguistic speech processing increased. Also acoustic neural tracking (NT) decreased with increasing age, which is at odds with the literature. In contrast to linguistic processing, older subjects showed shorter latencies for early acoustic responses to speech. No evidence was found for hemispheric lateralization in neither younger nor older adults during linguistic speech processing. Most of the observed aging effects on acoustic and linguistic processing were not explained by age-related decline in hearing capacity or cognition. However, our results suggest that the effect of decreasing linguistic neural tracking with advancing age at word-level is also partially due to an age-related decline in cognition than a robust effect of age. CONCLUSION: Spatial and temporal characteristics of the neural responses to continuous speech change across the adult lifespan for both acoustic and linguistic speech processing. These changes may be traces of structural and/or functional change that occurs with advancing age.


Subject(s)
Speech Perception , Speech , Humans , Aged , Speech/physiology , Acoustic Stimulation/methods , Speech Perception/physiology , Electroencephalography/methods , Linguistics , Acoustics
11.
Article in English | MEDLINE | ID: mdl-34823443

ABSTRACT

Knowledge on statistical learning (SL) in healthy elderly is scarce. Theoretically, it is not clear whether aging affects modality-specific and/or domain-general learning mechanisms. Practically, there is a lack of research on simplified SL tasks, which would ease the burden of testing in clinical populations. Against this background, we conducted two experiments across three modalities (auditory, visual and visuomotor) in a total of 93 younger and older adults. In Experiment 1, SL was induced in all modalities. Aging effects appeared in the tasks relying on an explicit posttest to assess SL. We hypothesize that declines in domain-general processes that predominantly modulate explicit learning mechanisms underlie these aging effects. In Experiment 2, more feasible tasks were developed for which the level of SL was maintained in all modalities, except the auditory modality. These tasks are more likely to successfully measure SL in elderly (patient) populations in which task demands can be problematic.


Subject(s)
Aging , Learning , Humans , Aged , Feasibility Studies , Health Status , Knowledge
12.
Neuroimage Clin ; 36: 103271, 2022.
Article in English | MEDLINE | ID: mdl-36510409

ABSTRACT

A disruption of white matter connectivity is negatively associated with language (recovery) in patients with aphasia after stroke, and behavioral gains have been shown to coincide with white matter neuroplasticity. However, most brain-behavior studies have been carried out in the chronic phase after stroke, with limited generalizability to earlier phases. Furthermore, few studies have investigated neuroplasticity patterns during spontaneous recovery (i.e., not related to a specific treatment) in the first months after stroke, hindering the investigation of potential early compensatory mechanisms. Finally, the majority of previous research has focused on damaged left hemisphere pathways, while neglecting the potential protective value of their right hemisphere counterparts for language recovery. To address these outstanding issues, we present a longitudinal study of thirty-two patients with aphasia (21 males and 11 females, M = 69.47 years, SD = 10.60 years) who were followed up for a period of 1 year with test moments in the acute (1-2 weeks), subacute (3-6 months) and chronic phase (9-12 months) after stroke. Constrained Spherical Deconvolution-based tractography was performed in the acute and subacute phase to measure Fiber Bundle Capacity (FBC), a quantitative connectivity measure that is valid in crossing fiber regions, in the bilateral dorsal arcuate fasciculus (AF) and the bilateral ventral inferior fronto-occipital fasciculus (IFOF). First, concurrent analyses revealed positive associations between the left AF and phonology, and between the bilateral IFOF and semantics in the acute - but not subacute - phase, supporting the dual-stream language model. Second, neuroplasticity analyses revealed a decrease in connection density of the bilateral AF - but not the IFOF - from the acute to the subacute phase, possibly reflecting post stroke white matter degeneration in areas adjacent to the lesion. Third, predictive analyses revealed no contribution of acute FBC measures to the prediction of later language outcomes over and above the initial language scores, suggesting no added value ofthe diffusion measures for languageprediction. Our study provides new insights on (changes in) connectivity of damaged and undamaged language pathways in patients with aphasia in the first months after stroke, as well as if/how such measures are related to language outcomes at different stages of recovery. Individual results are discussed in the light of current frameworks of language processing and aphasia recovery.


Subject(s)
Aphasia , Stroke , White Matter , Male , Female , Humans , White Matter/diagnostic imaging , White Matter/pathology , Diffusion Tensor Imaging , Longitudinal Studies , Neural Pathways/diagnostic imaging , Neural Pathways/pathology , Aphasia/etiology , Aphasia/complications , Stroke/complications , Stroke/pathology
13.
Front Psychol ; 13: 1021767, 2022.
Article in English | MEDLINE | ID: mdl-36389538

ABSTRACT

Developmental dyslexia is considered to be most effectively addressed with preventive phonics-based interventions, including grapheme-phoneme coupling and blending exercises. These intervention types require intact speech perception abilities, given their large focus on exercises with auditorily presented phonemes. Yet some children with (a risk for) dyslexia experience problems in this domain due to a poorer sensitivity to rise times, i.e., rhythmic acoustic cues present in the speech envelope. As a result, the often subtle speech perception problems could potentially constrain an optimal response to phonics-based interventions in at-risk children. The current study therefore aimed (1) to extend existing research by examining the presence of potential speech perception deficits in pre-readers at cognitive risk for dyslexia when compared to typically developing peers and (2) to explore the added value of a preventive auditory intervention for at-risk pre-readers, targeting rise time sensitivity, on speech perception and other reading-related skills. To obtain the first research objective, we longitudinally compared speech-in-noise perception between 28 5-year-old pre-readers with and 30 peers without a cognitive risk for dyslexia during the second half of the third year of kindergarten. The second research objective was addressed by exploring growth in speech perception and other reading-related skills in an independent sample of 62 at-risk 5-year-old pre-readers who all combined a 12-week preventive phonics-based intervention (GraphoGame-Flemish) with an auditory story listening intervention. In half of the sample, story recordings contained artificially enhanced rise times (GG-FL_EE group, n = 31), while in the other half, stories remained unprocessed (GG-FL_NE group, n = 31; Clinical Trial Number S60962-https://www.uzleuven.be/nl/clinical-trial-center). Results revealed a slower speech-in-noise perception growth in the at-risk compared to the non-at-risk group, due to an emerged deficit at the end of kindergarten. Concerning the auditory intervention effects, both intervention groups showed equal growth in speech-in-noise perception and other reading-related skills, suggesting no boost of envelope-enhanced story listening on top of the effect of combining GraphoGame-Flemish with listening to unprocessed stories. These findings thus provide evidence for a link between speech perception problems and dyslexia, yet do not support the potential of the auditory intervention in its current form.

14.
Neuroimage Clin ; 36: 103243, 2022.
Article in English | MEDLINE | ID: mdl-36306718

ABSTRACT

Although several studies have aimed for accurate predictions of language recovery in post stroke aphasia, individual language outcomes remain hard to predict. Large-scale prediction models are built using data from patients mainly in the chronic phase after stroke, although it is clinically more relevant to consider data from the acute phase. Previous research has mainly focused on deficits, i.e., behavioral deficits or specific brain damage, rather than compensatory mechanisms, i.e., intact cognitive skills or undamaged brain regions. One such unexplored brain region that might support language (re)learning in aphasia is the hippocampus, a region that has commonly been associated with an individual's learning potential, including statistical learning. This refers to a set of mechanisms upon which we rely heavily in daily life to learn a range of regularities across cognitive domains. Against this background, thirty-three patients with aphasia (22 males and 11 females, M = 69.76 years, SD = 10.57 years) were followed for 1 year in the acute (1-2 weeks), subacute (3-6 months) and chronic phase (9-12 months) post stroke. We evaluated the unique predictive value of early structural hippocampal measures for short-term and long-term language outcomes (measured by the ANELT). In addition, we investigated whether statistical learning abilities were intact in patients with aphasia using three different tasks: an auditory-linguistic and visual task based on the computation of transitional probabilities and a visuomotor serial reaction time task. Finally, we examined the association of individuals' statistical learning potential with acute measures of hippocampal gray and white matter. Using Bayesian statistics, we found moderate evidence for the contribution of left hippocampal gray matter in the acute phase to the prediction of long-term language outcomes, over and above information on the lesion and the initial language deficit (measured by the ScreeLing). Non-linguistic statistical learning in patients with aphasia, measured in the subacute phase, was intact at the group level compared to 23 healthy older controls (8 males and 15 females, M = 74.09 years, SD = 6.76 years). Visuomotor statistical learning correlated with acute hippocampal gray and white matter. These findings reveal that particularly left hippocampal gray matter in the acute phase is a potential marker of language recovery after stroke, possibly through its statistical learning ability.


Subject(s)
Aphasia , Stroke , Male , Female , Humans , Bayes Theorem , Aphasia/pathology , Language , Stroke/complications , Stroke/pathology , Brain/pathology
15.
Brain Struct Funct ; 227(6): 2209-2217, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35403895

ABSTRACT

Diffusion-weighted imaging studies have repeatedly shown that white matter correlates with reading throughout development. However, the neurobiological interpretation of this relationship is constrained by the limited microstructural specificity of diffusion imaging. A critical component of white matter microstructure is myelin, which can be investigated noninvasively using MRI. Here, we examined the link between myelin water fraction (MWF) and reading ability in 10-year-old children (n = 69). To better understand this relationship, we additionally investigated how these two variables relate to fractional anisotropy (FA; a common index of diffusion-weighted imaging). Our analysis revealed that lower MWF coheres with better reading scores in left-hemispheric tracts relevant for reading. While we replicated previous reports on a positive relationship between FA and MWF, we did not find any evidence for an association between reading and FA. Together, these findings contrast previous research suggesting that poor reading abilities might be rooted in lower myelination and emphasize the need for further longitudinal research to understand how this relationship evolves throughout reading development. Altogether, this study contributes important insights into the role of myelin-related processes in the relationship between reading and white matter structure.


Subject(s)
Myelin Sheath , White Matter , Anisotropy , Brain/diagnostic imaging , Child , Humans , Reading , Water/analysis , White Matter/diagnostic imaging
16.
JMIR Serious Games ; 10(1): e34698, 2022 Mar 23.
Article in English | MEDLINE | ID: mdl-35319480

ABSTRACT

BACKGROUND: Enjoyment plays a key role in the success and feasibility of serious gaming interventions. Unenjoyable games will not be played, and in the case of serious gaming, learning will not occur. Therefore, a so-called GameFlow model has been developed, which intends to guide (serious) game developers in the process of creating and evaluating enjoyment in digital (serious) games. Regarding language learning, a variety of serious games targeting specific language components exist in the market, albeit often without available assessments of enjoyment or feasibility. OBJECTIVE: This study evaluates the enjoyment and feasibility of a tablet-based, serious story-listening game for kindergarteners, developed based on the principles of the GameFlow model. This study also preliminarily explores the possibility of using the game to foster language comprehension. METHODS: Within the framework of a broader preventive reading intervention, 91 kindergarteners aged 5 years with a cognitive risk for dyslexia were asked to play the story game for 12 weeks, 6 days per week, either combined with a tablet-based phonics intervention or control games. The story game involved listening to and rating stories and responding to content-related questions. Game enjoyment was assessed through postintervention questionnaires, a GameFlow-based evaluation, and in-game story rating data. Feasibility was determined based on in-game general question response accuracy (QRA), reflecting the difficulty level, attrition rate, and final game exposure and training duration. Moreover, to investigate whether game enjoyment and difficulty influenced feasibility, final game exposure and training duration were predicted based on the in-game initial story ratings and initial QRA. Possible growth in language comprehension was explored by analyzing in-game QRA as a function of the game phase and baseline language skills. RESULTS: Eventually, data from 82 participants were analyzed. The questionnaire and in-game data suggested an overall enjoyable game experience. However, the GameFlow-based evaluation implied room for game design improvement. The general QRA confirmed a well-adapted level of difficulty for the target sample. Moreover, despite the overall attrition rate of 39% (32/82), 90% (74/82) of the participants still completed 80% of the game, albeit with a large variation in training days. Higher initial QRA significantly increased game exposure (ß=.35; P<.001), and lower initial story ratings significantly slackened the training duration (ß=-0.16; P=.003). In-game QRA was positively predicted by game phase (ß=1.44; P=.004), baseline listening comprehension (ß=1.56; P=.002), and vocabulary (ß=.16; P=.01), with larger QRA growth over game phases in children with lower baseline listening comprehension skills (ß=-0.08; P=.04). CONCLUSIONS: Generally, the story game seemed enjoyable and feasible. However, the GameFlow model evaluation and predictive relationships imply room for further game design improvements. Furthermore, our results cautiously suggest the potential of the game to foster language comprehension; however, future randomized controlled trials should further elucidate the impact on language comprehension.

17.
Cereb Cortex ; 32(21): 4684-4697, 2022 10 20.
Article in English | MEDLINE | ID: mdl-35059709

ABSTRACT

Recent prereading evidence demonstrates that white matter alterations are associated with dyslexia even before the onset of reading instruction. At the same time, remediation of reading difficulties is suggested to be most effective when provided as early as kindergarten, yet evidence is currently lacking on the early neuroanatomical changes associated with such preventive interventions. To address this open question, we investigated white matter changes following early literacy intervention in Dutch-speaking prereaders (aged 5-6 years) with an increased cognitive risk for developing dyslexia. Diffusion-weighted images were acquired before and after a 12-week digital intervention in three groups: (i) at-risk children receiving phonics-based training (n = 31); (ii) at-risk children engaging with active control training (n = 25); and (iii) typically developing children (n = 27) receiving no intervention. Following automated quantification of white matter tracts relevant for reading, we first examined baseline differences between at-risk and typically developing children, revealing bilateral dorsal and ventral differences. Longitudinal analyses showed that white matter properties changed within the course of the training; however, the absence of intervention-specific results suggests that these changes rather reflect developmental effects. This study contributes important first insights on the neurocognitive mechanisms of intervention that precedes formal reading onset.


Subject(s)
Dyslexia , White Matter , Child , Humans , Literacy , Reading , Educational Status
18.
Brain Struct Funct ; 227(2): 587-597, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34510280

ABSTRACT

The visual word form area (VWFA) plays a significant role in the development of reading skills. However, the developmental course and anatomical properties of the VWFA have only limitedly been investigated. The aim of the current longitudinal MRI study was to investigate dynamic, bidirectional relations between reading, and the structure of the left fusiform gyrus at the early-to-advanced reading stage. More specifically, by means of bivariate correlations and a cross-lagged panel model (CLPM), the interrelations between the size of the left fusiform gyrus and reading skills (an average score of a word and pseudo-word reading task) were studied in a longitudinal cohort of 43 Flemish children (29M, 14F) with variable reading skills in grade 2 (the early stage of reading) and grade 5 (the advanced stage of reading) of primary school. Results revealed that better reading skills at grade 2 lead to a larger size of the left fusiform gyrus at grade 5, whereas there are no directional effects between the size of the left fusiform gyrus at grade 2 and reading skills at grade 5. Hence, according to our results, there is behavior-driven brain plasticity and no brain-driven reading change between the early and advanced stage of reading. Together with pre-reading brain studies showing predictive relations to later reading scores, our results suggest that the direction of brain-behavioral influences changes throughout the course of reading development.


Subject(s)
Reading , Temporal Lobe , Brain/diagnostic imaging , Brain Mapping , Child , Humans , Magnetic Resonance Imaging , Temporal Lobe/diagnostic imaging
19.
Dev Sci ; 25(3): e13186, 2022 05.
Article in English | MEDLINE | ID: mdl-34743382

ABSTRACT

Dyslexia has frequently been related to atypical auditory temporal processing and speech perception. Results of studies emphasizing speech onset cues and reinforcing the temporal structure of the speech envelope, that is, envelope enhancement (EE), demonstrated reduced speech perception deficits in individuals with dyslexia. The use of this strategy as auditory intervention might thus reduce some of the deficits related to dyslexia. Importantly, reading-skill interventions are most effective when they are provided during kindergarten and first grade. Hence, we provided a tablet-based 12-week auditory and phonics-based intervention to pre-readers at cognitive risk for dyslexia and investigated the effect on auditory temporal processing with a rise time discrimination (RTD) task. Ninety-one pre-readers at cognitive risk for dyslexia (aged 5-6) were assigned to two groups receiving a phonics-based intervention and playing a story listening game either with (n = 31) or without (n = 31) EE or a third group playing control games and listening to non-enhanced stories (n = 29). RTD was measured directly before, directly after and 1 year after the intervention. While the groups listening to non-enhanced stories mainly improved after the intervention during first grade, the group listening to enhanced stories improved during the intervention in kindergarten and subsequently remained stable during first grade. Hence, an EE intervention improves auditory processing skills important for the development of phonological skills. This occurred before the onset of reading instruction, preceding the maturational improvement of these skills, hence potentially giving at risk children a head start when learning to read. A video abstract of this article can be viewed at https://www.youtube.com/watch?v=e0BfT4dGXNA.


Subject(s)
Dyslexia , Speech Perception , Child , Cognition , Dyslexia/psychology , Humans , Phonetics , Reading , Speech
20.
Front Psychol ; 12: 687651, 2021.
Article in English | MEDLINE | ID: mdl-34733197

ABSTRACT

Perception of low-level auditory cues such as frequency modulation (FM) and rise time (RT) is crucial for development of phonemic representations, segmentation of word boundaries, and attunement to prosodic patterns in language. While learning an additional language, children may develop an increased sensitivity to these cues to extract relevant information from multiple types of linguistic input. Performance on these auditory processing tasks such as FM and RT by children learning another language is, however, unknown. Here we examine 92 English-speaking 7-8-year-olds in the U.S. and their performance in FM and RT perceptual tasks at the end of their second year in Cantonese or Spanish dual-language immersion compared to children in general English education programs. Results demonstrate that children in immersion programs have greater sensitivity to FM, but not RT, controlling for various factors. The immersion program students were also observed to have better phonological awareness performance. However, individual differences in FM sensitivity were not associated with phonological awareness, a pattern typically observed in monolinguals. These preliminary findings suggest a possible impact of formal language immersion on low-level auditory processing. Additional research is warranted to understand causal relationships and ultimate impact on language skills in multilinguals.

SELECTION OF CITATIONS
SEARCH DETAIL
...