Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
Add more filters










Publication year range
1.
Inorg Chem ; 63(12): 5568-5579, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38470041

ABSTRACT

Two-dimensional (2D) hybrid organic-inorganic perovskites constitute a versatile class of materials applied to a variety of optoelectronic devices. These materials are composed of alternating layers of inorganic lead halide octahedra and organic ammonium cations. Most perovskite research studies so far have focused on organic sublattices based on phenethylammonium and alkylammonium cations, which are packed by van der Waals cohesive forces. Here, we report a more complex organic sublattice containing benzotriazole-based ammonium cations packed through interdigitated π-π stacking and hydrogen bonding. Single crystals and thin films of four perovskite derivatives are studied in depth with optical spectroscopy and X-ray diffraction, supported by density-functional theory calculations. We quantify the lattice stabilization of interdigitation, dipole-dipole interactions, and inter- as well as intramolecular hydrogen bonding. Furthermore, we investigate the driving force behind interdigitation by defining a steric occupancy factor σ and tuning the composition of the organic and inorganic sublattice. We relate the phenomenon of interdigitation to the available lattice space and to weakened hydrogen bonding to the inorganic octahedra. Finally, we find that the stabilizing interactions in the organic sublattice slightly improve the thermal stability of the perovskite. This work sheds light on the design rules and structure-property relationships of 2D layered hybrid perovskites.

2.
J Am Chem Soc ; 145(39): 21330-21343, 2023 Oct 04.
Article in English | MEDLINE | ID: mdl-37738152

ABSTRACT

The family of hybrid organic-inorganic lead-halide perovskites are the subject of intense interest for optoelectronic applications, from light-emitting diodes to photovoltaics to X-ray detectors. Due to the inert nature of most organic molecules, the inorganic sublattice generally dominates the electronic structure and therefore the optoelectronic properties of perovskites. Here, we use optically and electronically active carbazole-based Cz-Ci molecules, where Ci indicates an alkylammonium chain and i indicates the number of CH2 units in the chain, varying from 3 to 5, as cations in the two-dimensional (2D) perovskite structure. By investigating the photophysics and charge transport characteristics of (Cz-Ci)2PbI4, we demonstrate a tunable electronic coupling between the inorganic lead-halide and organic layers. The strongest interlayer electronic coupling was found for (Cz-C3)2PbI4, where photothermal deflection spectroscopy results remarkably reveal an organic-inorganic charge transfer state. Ultrafast transient absorption spectroscopy measurements demonstrate ultrafast hole transfer from the photoexcited lead-halide layer to the Cz-Ci molecules, the efficiency of which increases by varying the chain length from i = 5 to i = 3. The charge transfer results in long-lived carriers (10-100 ns) and quenched emission, in stark contrast to the fast (sub-ns) and efficient radiative decay of bound excitons in the more conventional 2D perovskite (PEA)2PbI4, in which phenylethylammonium (PEA) acts as an inert spacer. Electrical charge transport measurements further support enhanced interlayer coupling, showing increased out-of-plane carrier mobility from i = 5 to i = 3. This study paves the way for the rational design of 2D perovskites with combined inorganic-organic electronic properties through the wide range of functionalities available in the world of organics.

3.
ACS Appl Mater Interfaces ; 15(40): 46803-46811, 2023 Oct 11.
Article in English | MEDLINE | ID: mdl-37755314

ABSTRACT

The metal halide perovskite absorbers are prone to surface defects, which severely limit the power conversion efficiencies (PCEs) and the operational stability of the perovskite solar cells (PSCs). Herein, trace amounts of bithiophene propylammonium iodide (bi-TPAI) are applied to modulate the surface properties of the gas-quenched perovskite. It is found that the bi-TPAI surface treatment has negligible impact on the perovskite morphology, but it can induce a defect passivation effect and facilitate the charge carrier extraction, contributing to the gain in the open-circuit voltage (Voc) and fill factor. As a result, the PCE of the gas-quenched sputtered NiOx-based inverted PSCs is enhanced from the initial 20.0% to 22.0%. Most importantly, the bi-TPAI treatment can largely alleviate or even eliminate the burn-in process during the maximum power point tracking measurement, improving the operational stability of the devices.

4.
ACS Appl Energy Mater ; 6(7): 3933-3943, 2023 Apr 10.
Article in English | MEDLINE | ID: mdl-37064411

ABSTRACT

2H-Benzotriazol-2-ylethylammonium bromide and iodide and its difluorinated derivatives are synthesized and employed as interlayers for passivation of formamidinium lead triiodide (FAPbI3) solar cells. In combination with PbI2 and PbBr2, these benzotriazole derivatives form two-dimensional (2D) Ruddlesden-Popper perovskites (RPPs) as evidenced by their crystal structures and thin film characteristics. When used to passivate n-i-p FAPbI3 solar cells, the power conversion efficiency improves from 20% to close to 22% by enhancing the open-circuit voltage. Quasi-Fermi level splitting experiments and scanning electron microscopy cathodoluminescence hyperspectral imaging reveal that passivation provides a reduced nonradiative recombination at the interface between the perovskite and hole transport layer. Photoluminescence spectroscopy, angle-resolved grazing-incidence wide-angle X-ray scattering, and depth profiling X-ray photoelectron spectroscopy studies of the 2D/three-dimensional (3D) interface between the benzotriazole RPP and FAPbI3 show that a nonuniform layer of 2D perovskites is enough to passivate defects, enhance charge extraction, and decrease nonradiative recombination.

5.
Phys Chem Chem Phys ; 22(28): 16387-16399, 2020 Jul 22.
Article in English | MEDLINE | ID: mdl-32657285

ABSTRACT

To gauge the suitability of an organic dye for thermally activated delayed fluorescence (TADF), its excited state properties are often calculated using density functional theory. For this purpose, the choice of the exchange-correlation (XC) functional is crucial as it heavily influences the quality of the obtained results. In this work, 19 different XC functionals with various amounts of Hartree-Fock (HF) exchange and/or long-range correction parameters are benchmarked versus resolution-of-the-identity second-order coupled cluster (riCC2) calculations for a set of 10 prototype intramolecular donor-acceptor compounds. For the time-dependent density functional theory (TD-DFT) calculations, LC-BLYP(ω = 0.20) and M06-2X are the better performing XC functionals when looking at singlet and triplet excitation energies, respectively. For the singlet-triplet energy gap, LC-BLYP(ω = 0.17), LC-ωPBE(ω = 0.17) and a hybrid LC-BLYP(ω = 0.20)/M06-2X method give the smallest mean average errors (MAEs). Using the Tamm-Dancoff approximation (TD-DFT/TDA), the MAEs are further reduced for the triplet vertical excitation energies and the singlet-triplet energy gaps.

6.
J Phys Chem Lett ; 11(3): 824-830, 2020 Feb 06.
Article in English | MEDLINE | ID: mdl-31944771

ABSTRACT

Two-dimensional (2D) hybrid perovskites make up an emerging class of materials for optoelectronic applications in which inorganic octahedral layers are separated by nonconductive large organic cations. This leads to a high-dimensional and dielectric confinement and hence a high exciton binding energy, which severely limits their application in devices in which charge carrier separation is required. In this work, we achieve improved charge separation by replacing nonconductive organic cations with organic charge-transfer complexes consisting of a pyrene donor and a tetracyanoquinodimethane acceptor. Steady-state absorption measurements show that these materials exhibit optical features that match with the absorption of the organic charge-transfer complexes. Using microwave conductivity and femtosecond transient absorption, we show that photoexcitation of these charge-transfer states leads to long-lived mobile charges in the inorganic layers. While the efficiency of charge separation is relatively low, these experiments demonstrate that it is possible to induce charge separation in solid-state 2D perovskites by engineering the organic layer.

7.
Materials (Basel) ; 12(15)2019 Aug 06.
Article in English | MEDLINE | ID: mdl-31390806

ABSTRACT

Conjugated polymer nanoparticles exhibit very interesting properties for use as bio-imaging agents. In this paper, we report the synthesis of PCDTBT (poly([9-(1'-octylnonyl)-9H-carbazole-2,7-diyl]-2,5-thiophenediyl-2,1,3-benzothiadiazole-4,7-diyl-2,5-thiophene-diyl)) nanoparticles of varying sizes using the mini-emulsion and emulsion/solvent evaporation approach. The effect of the size of the particles on the optical properties is investigated using UV-Vis absorption and fluorescence emission spectroscopy. It is shown that PCDTBT nanoparticles have a fluorescence emission maximum around 710 nm, within the biological near-infrared "optical window". The photoluminescence quantum yield shows a characteristic trend as a function of size. The particles are not cytotoxic and are taken up successfully by human lung cancer carcinoma A549 cells. Irrespective of the size, all particles show excellent fluorescent brightness for bioimaging. The fidelity of the particles as fluorescent probes to study particle dynamics in situ is shown as a proof of concept by performing raster image correlation spectroscopy. Combined, these results show that PCDTBT is an excellent candidate to serve as a fluorescent probe for near-infrared bio-imaging.

8.
Chem Commun (Camb) ; 55(17): 2481-2484, 2019 Feb 21.
Article in English | MEDLINE | ID: mdl-30734783

ABSTRACT

This study broadens the family of 2D layered perovskites by demonstrating that it is possible to self-assemble organic charge-transfer complexes in their organic layer. Organic charge-transfer complexes, formed by combining charge-donating and charge-accepting molecules, are a diverse class of materials that can possess exceptional optical and electronic properties.

9.
ACS Biomater Sci Eng ; 5(4): 1967-1977, 2019 Apr 08.
Article in English | MEDLINE | ID: mdl-33405521

ABSTRACT

Fluorescent conjugated polymers formulated in nanoparticles show attractive properties to be used as bioimaging probes. However, their fluorescence brightness is generally limited by quenching phenomena due to interchain aggregation in the confined nanoparticle space. In this work, branched conjugated polymer networks are investigated as a way to enhance the photoluminescence quantum yield of the resulting conjugated polymer nanoparticles (CPNs). 1,3,5-Tribromobenzene and 2,2',7,7'-tetrabromo-9,9'-spirobifluorene are chosen as branching moieties and are added in 3 or 5 mol % to the poly(p-phenylene ethynylene) (PPE) conjugated polymer synthesis. Nanoparticles of all samples are prepared via the combined miniemulsion/solvent evaporation technique. The optical properties of the branched polymers in solution and in nanoparticle form are then compared to those of the linear PPE counterpart. The fluorescence quantum yield of the CPNs increases from 5 to 11% for the samples containing 1,3,5-tribromobenzene. Furthermore, when 5 mol % of either branching molecule is used, the one-photon fluorescence brightness doubles. The nanoparticles show low cytotoxicity in A549 human lung carcinoma cells up to a concentration of 100 µg/mL for 24 h. They also exhibit good particle uptake into cells and compatibility with two-photon imaging.

10.
Macromol Rapid Commun ; 39(14): e1800086, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29682847

ABSTRACT

Push-pull-type conjugated polymers applied in organic electronics do not always contain a perfect alternation of donor and acceptor building blocks. Misscouplings can occur, which have a noticeable effect on the device performance. In this work, the influence of homocoupling on the optoelectronic properties and photovoltaic performance of PDTSQxff polymers is investigated, with a specific focus on the quinoxaline acceptor moieties. A homocoupled biquinoxaline segment is intentionally inserted in specific ratios during the polymerization. These homocoupled units cause a gradually blue-shifted absorption, while the highest occupied molecular orbital energy levels decrease only significantly upon the presence of 75-100% of homocouplings. Density functional theory calculations show that the homocoupled acceptor unit generates a twist in the polymer backbone, which leads to a decreased conjugation length and a reduced aggregation tendency. The virtually defect-free PDTSQxff affords a solar cell efficiency of 5.4%, which only decreases substantially upon incorporating a homocoupling degree over 50%.


Subject(s)
Polymers/chemistry , Quinine/chemistry , Solar Energy , Polymerization , Polymers/chemical synthesis
11.
RSC Adv ; 8(64): 36869-36878, 2018 Oct 26.
Article in English | MEDLINE | ID: mdl-35558930

ABSTRACT

The development of functional nanocarriers with stimuli-responsive properties has advanced tremendously to serve biomedical applications such as drug delivery and regenerative medicine. However, the development of biodegradable nanocarriers that can be loaded with hydrophilic compounds and ensure its controlled release in response to changes in the surrounding environment still remains very challenging. Herein, we achieved such demands via the preparation of aqueous core nanocapsules using a base-catalyzed interfacial reaction employing a diisocyanate monomer and functional monomers/polymers containing thiol and hydroxyl functionalities at the droplet interface. pH-responsive poly(thiourethane-urethane) nanocarriers with ester linkages were synthesized by incorporating polycaprolactone diol, which is susceptible to hydrolytic degradation via ester linkages, as a functional monomer in the reaction formulation. We could demonstrate that by systematically varying the number of biodegradable segments, the morphology of the nanocarriers can be tuned without imparting the efficient encapsulation of hydrophilic payload (>85% encapsulation efficiency) and its transfer from organic to aqueous phase. The developed nanocarriers allow for a fast release of hydrophilic payload that depends on pH, the number of biodegradable segments and nanocarrier morphology. Succinctly put, this study provides important information to develop pH-responsive nanocarriers with tunable morphology, using interfacial reactions in the inverse miniemulsion process, by controlling the number of degradable segments to adjust the release profile depending on the type of application envisaged.

12.
J Colloid Interface Sci ; 504: 527-537, 2017 Oct 15.
Article in English | MEDLINE | ID: mdl-28605716

ABSTRACT

Conjugated polymers are versatile bio-imaging probes as their optical properties can be readily fine-tuned. In this manuscript, fluorescent conjugated polymer nanoparticles are fabricated using three different poly(p-phenylene ethynylene) (PPE) derivatives. The polymers have the same backbone but carry different side chains, i.e. regular octyloxy substituents, half of the octyloxy chains azide terminated, or azide functionalized tetraethylene glycol (TEG) moieties. The azide groups are specifically chosen to allow coupling of (bio)molecules to the surface of the particles using straightforward azide-alkyne click reactions, enabling different bioconjugation and targeting strategies. The influence of the functionalization pattern on the size and optical properties of the nanoparticles is studied using transmission electron microscopy, dynamic light scattering, UV-Vis absorption and fluorescence spectroscopy. The polymer containing the azide functionalized TEG chains affords larger particles, which can be attributed to hydration of the outer layer of the more hydrophilic polymer particles. However, this does not impact the fluorescence quantum yield. The two azide functionalized PPE particles exhibit the highest quantum yields (13%). Despite the presence of azide groups on two of the three materials, all particles are biocompatible and taken up by A549 human lung carcinoma cells. A proof of concept click reaction was performed as well.


Subject(s)
Fluorescent Dyes/chemistry , Nanoparticles/chemistry , Polyethylene Glycols/chemistry , Polymers/chemistry , A549 Cells , Azides/chemistry , Click Chemistry , Humans , Hydrophobic and Hydrophilic Interactions , Microscopy, Confocal/methods , Optical Imaging/methods , Spectrometry, Fluorescence/methods
13.
Sci Rep ; 7: 46257, 2017 04 13.
Article in English | MEDLINE | ID: mdl-28406235

ABSTRACT

With recent advances in the field of diagnostics and theranostics, liposomal technology has secured a fortified position as a potential nanocarrier. Specifically, radiation/photo-sensitive liposomes containing photo-polymerizable cross-linking lipids are intriguing as they can impart the vesicles with highly interesting properties such as response to stimulus and improved shell stability. In this work, 1,2-bis(10,12-tricosadiynoyl)-sn-glycero-3-phosphoethanolamine (DTPE) is used as a photo-polymerizable lipid to form functional hybrid-liposomes as it can form intermolecular cross-linking through the diacetylenic groups. Hybrid-liposomes were formulated using mixtures of DTPE and saturated lipids of different chain lengths (dipalmitoylphosphatidylcholine (DPPC) and dimirystoilphosphatidylcholine (DMPC)) at different molar ratios. The physico-chemical characteristics of the liposomes has been studied before and after UV irradiation using a combination of techniques: DSC, QCM-D and solid-state NMR. The results signify the importance of a subtle modification in alkyl chain length on the phase behavior of the hybrid-liposomes and on the degree of crosslinking in the shell.


Subject(s)
Chemical Phenomena , Drug Carriers/chemistry , Lipids/chemistry , Liposomes/chemistry , Nanoparticles/chemistry , Light , Magnetic Resonance Spectroscopy , Molecular Structure , Photochemical Processes , Theranostic Nanomedicine , Thermogravimetry
14.
Biomacromolecules ; 17(12): 4086-4094, 2016 12 12.
Article in English | MEDLINE | ID: mdl-27936730

ABSTRACT

Although micelles are commonly used for drug delivery purposes, their long-term fate is often unknown due to photobleaching of the fluorescent labels or the use of toxic materials. Here, we present a metal-free, nontoxic, nonbleaching, fluorescent micelle that can address these shortcomings. A simple, yet versatile, profluorescent micellar system, built from amphiphilic poly(p-phenylenevinylene) (PPV) block copolymers, for use in drug delivery applications is introduced. Polymer micelles made from PPV show excellent stability for up to 1 year and are successfully loaded with anticancer drugs (curcumin or doxorubicin) without requiring introduction of physical or chemical cross-links. The micelles are taken up efficiently by the cells, which triggers disassembly, releasing the encapsulated material. Disassembly of the micelles and drug release is conveniently monitored as fluorescence of the single polymer chains appear, which enables not only to monitor the release of the payload, but in principle also the fate of the polymer over longer periods of time.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Delivery Systems , Fluorescent Dyes/chemistry , Micelles , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/pathology , Polymers/chemistry , Polyvinyls/chemistry , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/chemistry , Cell Survival/drug effects , Curcumin/administration & dosage , Curcumin/chemistry , Curcumin/pharmacology , Doxorubicin/administration & dosage , Doxorubicin/chemistry , Doxorubicin/pharmacology , Drug Carriers/chemistry , Humans , Molecular Imaging/methods , Tumor Cells, Cultured
15.
Biomacromolecules ; 17(8): 2562-71, 2016 08 08.
Article in English | MEDLINE | ID: mdl-27345494

ABSTRACT

Conjugated polymers have attracted significant interest in the bioimaging field due to their excellent optical properties and biocompatibility. Tailor-made poly(p-phenylenevinylene) (PPV) conjugated polymer nanoparticles (NPs) are in here described. Two different nanoparticle systems using poly[2-methoxy-5-(3',7'-dimethoxyoctyloxy)-1,4-phenylenevinylene] (MDMO-PPV) and a functional statistical copolymer 2-(5'-methoxycarbonylpentyloxy)-5-methoxy-1,4-phenylenevinylene (CPM-MDMO-PPV), containing ester groups on the alkoxy side chains, were synthesized by combining miniemulsion and solvent evaporation processes. The hydrolysis of ester groups into carboxylic acid groups on the CPM-MDMO-PPV NPs surface allows for biomolecule conjugation. The NPs exhibited excellent optical properties with a high fluorescent brightness and photostability. The NPs were in vitro tested as potential fluorescent nanoprobes for studying cell populations within the central nervous system. The cell studies demonstrated biocompatibility and surface charge dependent cellular uptake of the NPs. This study highlights that PPV-derivative based particles are a promising bioimaging probe and can cater potential applications in the field of nanomedicine.


Subject(s)
Astrocytes/metabolism , Cell Communication , Endothelium, Vascular/metabolism , Microglia/metabolism , Molecular Imaging/methods , Nanoparticles/chemistry , Polymers/chemistry , Astrocytes/cytology , Endothelium, Vascular/cytology , Fluorescent Dyes , Humans , Microglia/cytology , Nanopores , Surface Properties
16.
ACS Appl Mater Interfaces ; 8(10): 6309-14, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26927416

ABSTRACT

Conjugated polyelectrolyte (CPE) interfacial layers present a powerful way to boost the I-V characteristics of organic photovoltaics. Nevertheless, clear guidelines with respect to the structure of high-performance interlayers are still lacking. In this work, impedance spectroscopy is applied to probe the dielectric permittivity of a series of polythiophene-based CPEs. The presence of ionic pendant groups grants the formation of a capacitive double layer, boosting the charge extraction and device efficiency. A counteracting effect is the diminishing affinity with the underlying photoactive layer. To balance these two effects, we found copolymer structures containing nonionic side chains to be beneficial.

17.
Chemistry ; 21(52): 19176-85, 2015 12 21.
Article in English | MEDLINE | ID: mdl-26568272

ABSTRACT

Despite various studies on the polymerization of poly(p-phenylene vinylene) (PPV) through different precursor routes, detailed mechanistic knowledge on the individual reaction steps and intermediates is still incomplete. The present study aims to gain more insight into the radical polymerization of PPV through the Gilch route. The initial steps of the polymerization involve the formation of a p-quinodimethane intermediate, which spontaneously self-initiates through a dimerization process leading to the formation of diradical species; chain propagation ensues on both sides of the diradical or chain termination occurs by the formation of side products, such as [2.2]paracyclophanes. Furthermore, different p-quinodimethane systems were assessed with respect to the size of their aromatic core as well as the presence of heteroatoms in/on the conjugated system. The nature of the aromatic core and the specific substituents alter the electronic structure of the p-quinodimethane monomers, affecting the mechanism of polymerization. The diradical character of the monomers has been investigated with several advanced methodologies, such as spin-projected UHF, CASSCF, CASPT2, and DMRG calculations. It was shown that larger aromatic cores led to a higher diradical character in the monomers, which in turn is proposed to cause rapid initiation.

18.
ChemSusChem ; 8(19): 3228-33, 2015 Oct 12.
Article in English | MEDLINE | ID: mdl-26388210

ABSTRACT

Organic photovoltaics (OPV) have attracted great interest as a solar cell technology with appealing mechanical, aesthetical, and economies-of-scale features. To drive OPV toward economic viability, low-cost, large-scale module production has to be realized in combination with increased top-quality material availability and minimal batch-to-batch variation. To this extent, continuous flow chemistry can serve as a powerful tool. In this contribution, a flow protocol is optimized for the high performance benzodithiophene-thienopyrroledione copolymer PBDTTPD and the material quality is probed through systematic solar-cell evaluation. A stepwise approach is adopted to turn the batch process into a reproducible and scalable continuous flow procedure. Solar cell devices fabricated using the obtained polymer batches deliver an average power conversion efficiency of 7.2 %. Upon incorporation of an ionic polythiophene-based cathodic interlayer, the photovoltaic performance could be enhanced to a maximum efficiency of 9.1 %.


Subject(s)
Electric Power Supplies , Polymers/chemistry , Solar Energy , Thiophenes/chemistry
19.
Chem Commun (Camb) ; 51(87): 15858-15861, 2015 Nov 11.
Article in English | MEDLINE | ID: mdl-26377628

ABSTRACT

Functional nanocarriers were synthesized using an in situ inverse miniemulsion polymerization employing thiol-isocyanate reactions at the droplet interface to encapsulate hydrophilic payloads. The morphology of the nanocarriers is conveniently tunable by varying the reaction conditions and the dispersions are easily transferable to the aqueous phase.


Subject(s)
Drug Delivery Systems , Isocyanates/chemistry , Nanoparticles/chemistry , Sulfhydryl Compounds/chemistry , Antibiotics, Antineoplastic/chemistry , Doxorubicin/chemistry , Emulsions , HeLa Cells , Humans , Hydrophobic and Hydrophilic Interactions , Particle Size , Potassium Chloride/chemistry , Toluene 2,4-Diisocyanate/chemistry , Urethane/chemical synthesis
20.
J Org Chem ; 80(4): 2425-30, 2015 Feb 20.
Article in English | MEDLINE | ID: mdl-25611254

ABSTRACT

A series of fully conjugated quinoxaline-based oligophenylene macrocycles is synthesized by Ni(0)-mediated Yamamoto-type diaryl homocoupling of (fluorinated) 2,3-bis(4'-bromophenyl)quinoxaline precursors. Cyclotrimers and cyclotetramers are obtained as the dominant reaction products. The cyclooligomers are fully characterized, including single-crystal X-ray structures, and their optoelectronic properties are analyzed with respect to possible applications in host-guest chemistry and organic electronics.

SELECTION OF CITATIONS
SEARCH DETAIL
...