Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
2.
Nat Commun ; 14(1): 4622, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37528097

ABSTRACT

Caspase recruitment-domain containing protein 9 (CARD9) is a key signaling pathway in macrophages but its role in atherosclerosis is still poorly understood. Global deletion of Card9 in Apoe-/- mice as well as hematopoietic deletion in Ldlr-/- mice increases atherosclerosis. The acceleration of atherosclerosis is also observed in Apoe-/-Rag2-/-Card9-/- mice, ruling out a role for the adaptive immune system in the vascular phenotype of Card9 deficient mice. Card9 deficiency alters macrophage phenotype through CD36 overexpression with increased IL-1ß production, increased lipid uptake, higher cell death susceptibility and defective autophagy. Rapamycin or metformin, two autophagy inducers, abolish intracellular lipid overload, restore macrophage survival and autophagy flux in vitro and finally abolish the pro-atherogenic effects of Card9 deficiency in vivo. Transcriptomic analysis of human CARD9-deficient monocytes confirms the pathogenic signature identified in murine models. In summary, CARD9 is a key protective pathway in atherosclerosis, modulating macrophage CD36-dependent inflammatory responses, lipid uptake and autophagy.


Subject(s)
Atherosclerosis , Humans , Animals , Mice , Atherosclerosis/metabolism , Autophagy/genetics , Apolipoproteins E/genetics , Lipids , CARD Signaling Adaptor Proteins/metabolism , Mice, Knockout , Mice, Inbred C57BL
3.
Front Cardiovasc Med ; 10: 1098914, 2023.
Article in English | MEDLINE | ID: mdl-37522081

ABSTRACT

Background: Cardiopulmonary bypass (CPB) during cardiac surgery leads to deleterious systemic inflammation. We hypothesized that TREM-1, a myeloid receptor shed after activation, drives systemic inflammation during CPB. Methods: Prospective observational bi-centric study. Blood analysis (flow cytometry and ELISA) before and at H2 and H24 after CPB. Inclusion of adult patients who underwent elective cardiac surgery with CPB. Results: TREM-1 expression on neutrophils decreased between H0 and H2 while soluble (s)TREM-1 plasma levels increased. sTREM-1 levels increased at H2 and at H24 (p < 0.001). IL-6, IL-8, G-CSF and TNF-α, but not IL-1ß, significantly increased at H2 compared to H0 (p < 0.001), but dropped at H24. Principal component analysis showed a close relationship between sTREM-1 and IL-8. Three patterns of patients were identified: Profile 1 with high baseline sTREM-1 levels and high increase and profile 2/3 with low/moderate baseline sTREM-1 levels and no/moderate increase overtime. Profile 1 patients developed more severe organ failure after CPB, with higher norepinephrine dose, higher SOFA score and more frequently acute kidney injury at both H24 and H48. Acute atrial fibrillation was also more frequent in profile 1 patients at H24 (80% vs. 19.4%, p = 0.001). After adjustment on age and duration of CPB, H0, H2 and H24 sTREM-1 levels remained associated with prolonged ICU and hospital length of stay. Conclusions: Baseline sTREM-1 levels as well as early kinetics after cardiac surgery identified patients at high risk of post-operative complications and prolonged length of stay.

6.
Nat Commun ; 13(1): 6592, 2022 11 03.
Article in English | MEDLINE | ID: mdl-36329047

ABSTRACT

JAK2V617F mutation is associated with an increased risk for athero-thrombotic cardiovascular disease, but its role in aortic disease development and complications remains unknown. In a cohort of patients with myeloproliferative neoplasm, JAK2V617F mutation was identified as an independent risk factor for dilation of both the ascending and descending thoracic aorta. Using single-cell RNA-seq, complementary genetically-modified mouse models, as well as pharmacological approaches, we found that JAK2V617F mutation was associated with a pathogenic pro-inflammatory phenotype of perivascular tissue-resident macrophages, which promoted deleterious aortic wall remodeling at early stages, and dissecting aneurysm through the recruitment of circulating monocytes at later stages. Finally, genetic manipulation of tissue-resident macrophages, or treatment with a Jak2 inhibitor, ruxolitinib, mitigated aortic wall inflammation and reduced aortic dilation and rupture. Overall, JAK2V617F mutation drives vascular resident macrophages toward a pathogenic phenotype and promotes dissecting aortic aneurysm.


Subject(s)
Aortic Aneurysm , Aortic Dissection , Mice , Animals , Aortic Dissection/pathology , Phenotype , Mutation , Macrophages/pathology , Aortic Aneurysm/genetics , Aortic Aneurysm/complications
7.
Med Sci (Paris) ; 38(1): 32-37, 2022 Jan.
Article in French | MEDLINE | ID: mdl-35060884

ABSTRACT

The innate immune system plays a crucial role in cardiovascular disease initiation, progression and complications. TREM-1, a receptor mainly expressed by myeloid cells, orchestrates inflammatory responses and amplifies cytokine and chemokine production as well as oxidative burst. Recent experimental studies have demonstrated that TREM-1 blockade is protective, limiting atherosclerosis and abdominal aortic aneurysm development, as well as adverse tissue remodeling after cardiac or cerebral ischemic injuries. Plasma soluble TREM-1 level is a promising biomarker in patients with cardiovascular diseases for risk stratification, paving the way for personalized immune-modulatory approaches.


TITLE: Rôle du récepteur TREM-1 dans les maladies cardiovasculaires. ABSTRACT: La réponse immunitaire innée joue un rôle important dans le déclenchement et la progression des maladies cardiovasculaires ainsi que dans leurs complications, potentiellement mortelles. TREM-1, un récepteur membranaire principalement exprimé par les cellules myéloïdes, agit comme un chef d'orchestre de l'inflammation amplifiant la production de cytokines et de chimiokines. De récentes études expérimentales montrent que l'inhibition de TREM-1 limite le développement de l'athérosclérose, la dilatation aortique anévrismale, ainsi que les complications cardiaques et cérébrales lors de l'ischémie aiguë. Chez l'homme, la forme soluble de TREM-1, libérée après son activation, est un biomarqueur intéressant, qui permet d'identifier les patients à haut risque cardiovasculaire, et qui pourrait ouvrir la voie vers une approche immuno-modulatrice personnalisée des maladies cardiovasculaires.


Subject(s)
Cardiovascular Diseases , Triggering Receptor Expressed on Myeloid Cells-1 , Cytokines , Humans , Myeloid Cells
8.
Int J Cardiol ; 344: 213-219, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34534607

ABSTRACT

INTRODUCTION: Triggering receptor expressing on myeloid cells (TREM)-1 is involved in the pathophysiology of ischemic heart disease. Plasma soluble TREM-1 levels (sTREM-1) has been associated with increased risk of major adverse cardiovascular events (MACE) in acute myocardial infarction (AMI) patients. However, the causative link between TREM-1 and MACE remains unknown and requires further investigation before developing potential therapeutic approaches. METHODS AND RESULTS: Using the serum and DNA data bank from the prospective, nationwide French registry of Acute ST-elevation and non-ST-elevation Myocardial Infarction (FAST-MI 2010, N = 1293), we studied the association of plasma levels of sTREM-1 with 9 common genetic variants at the TREM1 locus and their relationship with recurrent MACE over a 3-year follow up. Plasma levels of sTREM-1 were associated with an increased risk of MACEs (death, recurrent MI or stroke) (adjusted HR = 1.86, 95%CI = 1.06-3.26 and HR = 1.11, 95%CI = 0.61-2.02 respectively for tertiles 3 and 2 versus tertile 1, P < 0.001). The study of common variants identified two major genetic determinants of sTREM-1 (rs4714449: beta = -0.11, Padd = 7.85 × 10-5 and rs3804276: beta = 0.18, Padd = 2.65 × 10-11) with a potential role on maintenance and/or differentiation of hematopoietic stem cells. However, associated variants only explained 4% of sTREM-1 variance (P = 2.74 × 10-14). Moreover, the rs4714449 variant, individually and in haplotype, was not significantly associated with MACE (HR = 0.61, 95%CI: 0.35-1.05, P = 0.07). CONCLUSIONS: Despite its relationship with increased risk of death, recurrent MI and stroke, genetic determinants of plasma levels of sTREM-1 were not found to be causal prognostic factors in patients with acute myocardial infarction.


Subject(s)
Myocardial Infarction , Non-ST Elevated Myocardial Infarction , Triggering Receptor Expressed on Myeloid Cells-1 , Humans , Myeloid Cells , Myocardial Infarction/diagnosis , Myocardial Infarction/epidemiology , Myocardial Infarction/genetics , Prospective Studies , Triggering Receptor Expressed on Myeloid Cells-1/blood , Triggering Receptor Expressed on Myeloid Cells-1/genetics
9.
Nat Commun ; 12(1): 1483, 2021 03 05.
Article in English | MEDLINE | ID: mdl-33674611

ABSTRACT

Acute myocardial infarction is a common condition responsible for heart failure and sudden death. Here, we show that following acute myocardial infarction in mice, CD8+ T lymphocytes are recruited and activated in the ischemic heart tissue and release Granzyme B, leading to cardiomyocyte apoptosis, adverse ventricular remodeling and deterioration of myocardial function. Depletion of CD8+ T lymphocytes decreases apoptosis within the ischemic myocardium, hampers inflammatory response, limits myocardial injury and improves heart function. These effects are recapitulated in mice with Granzyme B-deficient CD8+ T cells. The protective effect of CD8 depletion on heart function is confirmed by using a model of ischemia/reperfusion in pigs. Finally, we reveal that elevated circulating levels of GRANZYME B in patients with acute myocardial infarction predict increased risk of death at 1-year follow-up. Our work unravels a deleterious role of CD8+ T lymphocytes following acute ischemia, and suggests potential therapeutic strategies targeting pathogenic CD8+ T lymphocytes in the setting of acute myocardial infarction.


Subject(s)
CD8-Positive T-Lymphocytes/metabolism , Granzymes/genetics , Granzymes/metabolism , Heart/physiopathology , Ventricular Remodeling/physiology , Animals , Apoptosis , CD8-Positive T-Lymphocytes/pathology , Disease Models, Animal , Female , Heart Failure/metabolism , Heart Failure/pathology , Homeodomain Proteins/genetics , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Myocardial Infarction/metabolism , Myocardium/pathology , Swine , Transcriptome
10.
J Clin Invest ; 131(2)2021 01 19.
Article in English | MEDLINE | ID: mdl-33258804

ABSTRACT

The triggering receptor expressed on myeloid cells 1 (TREM-1) drives inflammatory responses in several cardiovascular diseases but its role in abdominal aortic aneurysm (AAA) remains unknown. Our objective was to explore the role of TREM-1 in a mouse model of angiotensin II-induced (AngII-induced) AAA. TREM-1 expression was detected in mouse aortic aneurysm and colocalized with macrophages. Trem1 gene deletion (Apoe-/-Trem1-/-), as well as TREM-1 pharmacological blockade with LR-12 peptide, limited both AAA development and severity. Trem1 gene deletion attenuated the inflammatory response in the aorta, with a reduction of Il1b, Tnfa, Mmp2, and Mmp9 mRNA expression, and led to a decreased macrophage content due to a reduction of Ly6Chi classical monocyte trafficking. Conversely, antibody-mediated TREM-1 stimulation exacerbated Ly6Chi monocyte aorta infiltration after AngII infusion through CD62L upregulation and promoted proinflammatory signature in the aorta, resulting in worsening AAA severity. AngII infusion stimulated TREM-1 expression and activation on Ly6Chi monocytes through AngII receptor type I (AT1R). In human AAA, TREM-1 was detected and TREM1 mRNA expression correlated with SELL mRNA expression. Finally, circulating levels of sTREM-1 were increased in patients with AAA when compared with patients without AAA. In conclusion, TREM-1 is involved in AAA pathophysiology and may represent a promising therapeutic target in humans.


Subject(s)
Angiotensin II/adverse effects , Aortic Aneurysm, Abdominal/metabolism , Cell Movement/drug effects , Monocytes/metabolism , Triggering Receptor Expressed on Myeloid Cells-1/metabolism , Angiotensin II/pharmacology , Animals , Aortic Aneurysm, Abdominal/chemically induced , Aortic Aneurysm, Abdominal/genetics , Aortic Aneurysm, Abdominal/pathology , Cell Movement/genetics , Gene Deletion , Humans , Interleukin-1beta/genetics , Interleukin-1beta/metabolism , Matrix Metalloproteinase 2/genetics , Matrix Metalloproteinase 2/metabolism , Mice , Mice, Knockout, ApoE , Monocytes/pathology , Triggering Receptor Expressed on Myeloid Cells-1/genetics , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism
11.
J Cell Mol Med ; 24(10): 5731-5739, 2020 05.
Article in English | MEDLINE | ID: mdl-32285594

ABSTRACT

Adaptive immune responses regulate the development of atherosclerosis, with a detrimental effect of type 1 but a protective role of type 2 immune responses. Immunization of Apolipoprotein E-deficient (ApoE-/- ) mice with Freund's adjuvant inhibits the development of atherosclerosis. However, the underlying mechanisms are not fully understood. Thymic stromal lymphopoietin (TSLP) is an IL7-like cytokine with essential impact on type 2 immune responses (Th2). Thymic stromal lymphopoietin is strongly expressed in epithelial cells of the skin, but also in various immune cells following appropriate stimulation. In this study, we investigated whether TSLP may be crucial for the anti-atherogenic effect of Freund's adjuvant. Subcutaneous injection of complete Freund's adjuvant (CFA) rapidly led to the expression of TSLP and IL1ß at the site of injection. In male mice, CFA-induced TSLP occurred in immigrated monocytes-and not epithelial cells-and was dependent on NLRP3 inflammasome activation and IL1ß-signalling. In females, CFA-induced TSLP was independent of IL1ß and upon ovariectomy. CFA/OVA led to a more pronounced imbalance of the T cell response in TSLPR-/- mice, with increased INFγ/IL4 ratio compared with wild-type controls. To test whether TSLP contributes to the anti-atherogenic effects of Freund's adjuvant, we treated ApoE-/- and ApoE-/- /TSLPR-/- mice with either CFA/IFA or PBS. ApoE-/- mice showed less atherogenesis upon CFA/IFA compared with PBS injections. ApoE-/- /TSLPR-/- mice had no attenuation of atherogenesis upon CFA/IFA treatment. Freund's adjuvant executes significant immune-modulating effects via TSLP induction. TSLP-TSLPR signalling is critical for CFA/IFA-mediated attenuation of atherosclerosis.


Subject(s)
Atherosclerosis/etiology , Atherosclerosis/metabolism , Cytokines/metabolism , Immunomodulation , Animals , Cytokines/genetics , Disease Susceptibility , Female , Freund's Adjuvant/immunology , Gene Expression , Immunity , Immunoglobulins/genetics , Immunoglobulins/metabolism , Interleukin-1beta/metabolism , Male , Mice , Mice, Knockout , Receptors, Cytokine/genetics , Receptors, Cytokine/metabolism , Signal Transduction , Skin/metabolism , Thymic Stromal Lymphopoietin
12.
Arterioscler Thromb Vasc Biol ; 39(6): 1149-1159, 2019 06.
Article in English | MEDLINE | ID: mdl-30943775

ABSTRACT

Objective- Recent studies suggested the occurrence of phenotypic switching of vascular smooth muscle cells (VSMCs) during the development of aortic aneurysm (AA). However, lineage-tracing studies are still lacking, and the behavior of VSMCs during the formation of dissecting AA is poorly understood. Approach and Results- We used multicolor lineage tracing of VSMCs to track their fate after injury in murine models of Ang II (angiotensin II)-induced dissecting AA. We also addressed the direct impact of autophagy on the response of VSMCs to AA dissection. Finally, we studied the relevance of these processes to human AAs. Here, we show that a subset of medial VSMCs undergoes clonal expansion and that VSMC outgrowths are observed in the adventitia and borders of the false channel during Ang II-induced development of dissecting AA. The clonally expanded VSMCs undergo phenotypic switching with downregulation of VSMC differentiation markers and upregulation of phagocytic markers, indicative of functional changes. In particular, autophagy and endoplasmic reticulum stress responses are activated in the injured VSMCs. Loss of autophagy in VSMCs through deletion of autophagy protein 5 gene ( Atg5) increases the susceptibility of VSMCs to death, enhances endoplasmic reticulum stress activation, and promotes IRE (inositol-requiring enzyme) 1α-dependent VSMC inflammation. These alterations culminate in increased severity of aortic disease and higher incidence of fatal AA dissection in mice with VSMC-restricted deletion of Atg5. We also report increased expression of autophagy and endoplasmic reticulum stress markers in VSMCs of human dissecting AAs. Conclusions- VSMCs undergo clonal expansion and phenotypic switching in Ang II-induced dissecting AAs in mice. We also identify a critical role for autophagy in regulating VSMC death and endoplasmic reticulum stress-dependent inflammation with important consequences for aortic wall homeostasis and repair.


Subject(s)
Aortic Aneurysm/pathology , Aortic Dissection/pathology , Autophagy , Cell Plasticity , Muscle, Smooth, Vascular/pathology , Myocytes, Smooth Muscle/pathology , Adult , Aged , Aortic Dissection/chemically induced , Aortic Dissection/metabolism , Angiotensin II , Animals , Aorta/metabolism , Aorta/pathology , Aortic Aneurysm/chemically induced , Aortic Aneurysm/metabolism , Autophagy-Related Protein 5/genetics , Autophagy-Related Protein 5/metabolism , Cell Lineage , Cells, Cultured , Disease Models, Animal , Endoribonucleases/metabolism , Female , Humans , Male , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Knockout, ApoE , Middle Aged , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/metabolism , Phenotype , Protein Serine-Threonine Kinases/metabolism , Signal Transduction
13.
PLoS One ; 13(3): e0193737, 2018.
Article in English | MEDLINE | ID: mdl-29494675

ABSTRACT

AIMS: Abdominal aortic aneurysm (AAA) is an age-associated disease characterized by chronic inflammation, vascular cell apoptosis and metalloproteinase-mediated extracellular matrix degradation. Despite considerable progress in identifying targets involved in these processes, therapeutic approaches aiming to reduce aneurysm growth and rupture are still scarce. Indoleamine 2-3 dioxygenase 1 (IDO) is the first and rate-limiting enzyme involved in the conversion of tryptophan (Trp) into kynurenine (Kyn) pathway. In this study, we investigated the role of IDO in two different models of AAA in mice. METHODS AND RESULTS: Mice with deficiencies in both low density receptor-deficient (Ldlr-/-) and IDO (Ldlr-/-Ido1-/-) were generated by cross-breeding Ido1-/- mice with Ldlr-/-mice. To induce aneurysm, these mice were infused with angiotensin II (Ang II) (1000 ng/min/kg) and fed with high fat diet (HFD) during 28 days. AAAs were present in almost all Ldlr-/- infused with AngII, but only in 50% of Ldlr-/-Ido1-/- mice. Immunohistochemistry at an early time point (day 7) revealed no changes in macrophage and T lymphocyte infiltration within the vessel wall, but showed reduced apoptosis, as assessed by TUNEL assay, and increased α-actin staining within the media of Ldlr-/-Ido1-/- mice, suggesting enhanced survival of vascular smooth muscle cells (VSMCs) in the absence of IDO. In another model of elastase-induced AAA in C57Bl/6 mice, IDO deficiency had no effect on aneurysm formation. CONCLUSION: Our study showed that the knockout of IDO prevented VSMC apoptosis in AngII -treated Ldlr-/- mice fed with HFD, suggesting a detrimental role of IDO in AAA formation and thus would be an important target for the treatment of aneurysm.


Subject(s)
Angiotensin II/adverse effects , Aortic Aneurysm, Abdominal/pathology , Diet, High-Fat/adverse effects , Indoleamine-Pyrrole 2,3,-Dioxygenase/deficiency , Muscle, Smooth, Vascular/cytology , Receptors, LDL/deficiency , Animals , Aortic Aneurysm, Abdominal/chemically induced , Aortic Aneurysm, Abdominal/genetics , Apoptosis , Cell Survival , Cells, Cultured , Disease Models, Animal , Macrophages/cytology , Macrophages/immunology , Macrophages/pathology , Male , Mice , Mice, Knockout , Muscle, Smooth, Vascular/pathology , Myocytes, Smooth Muscle/cytology , Myocytes, Smooth Muscle/pathology , T-Lymphocytes/cytology , T-Lymphocytes/immunology , T-Lymphocytes/pathology
14.
Arterioscler Thromb Vasc Biol ; 37(11): 2171-2181, 2017 11.
Article in English | MEDLINE | ID: mdl-28912363

ABSTRACT

OBJECTIVE: Current experimental models of abdominal aortic aneurysm (AAA) do not accurately reproduce the major features of human AAA. We hypothesized that blockade of TGFß (transforming growth factor-ß) activity-a guardian of vascular integrity and immune homeostasis-would impair vascular healing in models of nondissecting AAA and would lead to sustained aneurysmal growth until rupture. APPROACH AND RESULTS: Here, we test this hypothesis in the elastase-induced AAA model in mice. We analyze AAA development and progression using ultrasound in vivo, synchrotron-based ultrahigh resolution imaging ex vivo, and a combination of biological, histological, and flow cytometry-based cellular and molecular approaches in vitro. Systemic blockade of TGFß using a monoclonal antibody induces a transition from a self-contained aortic dilatation to a model of sustained aneurysmal growth, associated with the formation of an intraluminal thrombus. AAA growth is associated with wall disruption but no medial dissection and culminates in fatal transmural aortic wall rupture. TGFß blockade enhances leukocyte infiltration both in the aortic wall and the intraluminal thrombus and aggravates extracellular matrix degradation. Early blockade of IL-1ß or monocyte-dependent responses substantially limits AAA severity. However, blockade of IL-1ß after disease initiation has no effect on AAA progression to rupture. CONCLUSIONS: Endogenous TGFß activity is required for the healing of AAA. TGFß blockade may be harnessed to generate new models of AAA with better relevance to the human disease. We expect that the new models will improve our understanding of the pathophysiology of AAA and will be useful in the identification of new therapeutic targets.


Subject(s)
Antibodies, Monoclonal/toxicity , Aorta, Abdominal/drug effects , Aortic Aneurysm, Abdominal/chemically induced , Aortic Rupture/chemically induced , Pancreatic Elastase , Transforming Growth Factor beta/antagonists & inhibitors , Vascular Remodeling/drug effects , Animals , Aorta, Abdominal/immunology , Aorta, Abdominal/metabolism , Aorta, Abdominal/pathology , Aortic Aneurysm, Abdominal/immunology , Aortic Aneurysm, Abdominal/metabolism , Aortic Aneurysm, Abdominal/pathology , Aortic Rupture/immunology , Aortic Rupture/metabolism , Aortic Rupture/pathology , Apolipoproteins E/genetics , Apolipoproteins E/metabolism , Chemotaxis, Leukocyte/drug effects , Dilatation, Pathologic , Disease Models, Animal , Disease Progression , Extracellular Matrix/drug effects , Extracellular Matrix/metabolism , Extracellular Matrix/pathology , Interleukin-1beta/metabolism , Kinetics , Male , Mice, Inbred C57BL , Mice, Knockout , Synchrotrons , Thrombosis/chemically induced , Thrombosis/metabolism , Thrombosis/pathology , Transforming Growth Factor beta/immunology , Transforming Growth Factor beta/metabolism , Ultrasonography , Wound Healing/drug effects
15.
Circ Res ; 121(3): 234-243, 2017 Jul 21.
Article in English | MEDLINE | ID: mdl-28607102

ABSTRACT

RATIONALE: Necrotic core formation during the development of atherosclerosis is associated with a chronic inflammatory response and promotes accelerated plaque development and instability. However, the molecular links between necrosis and the development of atherosclerosis are not completely understood. Clec9a (C-type lectin receptor) or DNGR-1 (dendritic cell NK lectin group receptor-1) is preferentially expressed by the CD8α+ subset of dendritic cells (CD8α+ DCs) and is involved in sensing necrotic cells. We hypothesized that sensing of necrotic cells by DNGR-1 plays a determinant role in the inflammatory response of atherosclerosis. OBJECTIVE: We sought to address the impact of total, bone marrow-restricted, or CD8α+ DC-restricted deletion of DNGR-1 on atherosclerosis development. METHODS AND RESULTS: We show that total absence of DNGR-1 in Apoe (apolipoprotein e)-deficient mice (Apoe-/-) and bone marrow-restricted deletion of DNGR-1 in Ldlr (low-density lipoprotein receptor)-deficient mice (Ldlr-/-) significantly reduce inflammatory cell content within arterial plaques and limit atherosclerosis development in a context of moderate hypercholesterolemia. This is associated with a significant increase of the expression of interleukin-10 (IL-10). The atheroprotective effect of DNGR-1 deletion is completely abrogated in the absence of bone marrow-derived IL-10. Furthermore, a specific deletion of DNGR-1 in CD8α+ DCs significantly increases IL-10 expression, reduces macrophage and T-cell contents within the lesions, and limits the development of atherosclerosis. CONCLUSIONS: Our results unravel a new role of DNGR-1 in regulating vascular inflammation and atherosclerosis and potentially identify a new target for disease modulation.


Subject(s)
Atherosclerosis/metabolism , Atherosclerosis/pathology , Dendritic Cells/metabolism , Dendritic Cells/pathology , Interleukin-10/biosynthesis , Lectins, C-Type/deficiency , Receptors, Immunologic/deficiency , Animals , Male , Mice , Mice, Inbred C57BL , Mice, Knockout
16.
Cardiovasc Res ; 113(11): 1364-1375, 2017 Sep 01.
Article in English | MEDLINE | ID: mdl-28582477

ABSTRACT

AIMS: Abdominal aortic aneurysm (AAA), frequently diagnosed in old patients, is characterized by chronic inflammation, vascular cell apoptosis and metalloproteinase-mediated extracellular matrix destruction. Despite improvement in the understanding of the pathophysiology of aortic aneurysm, no pharmacological treatment is yet available to limit dilatation and/or rupture. We previously reported that human gingival fibroblasts (GFs) can reduce carotid artery dilatation in a rabbit model of elastase-induced aneurysm. Here, we sought to investigate the mechanisms of GF-mediated vascular protection in two different models of aortic aneurysm growth and rupture in mice. METHODS AND RESULTS: In vitro, mouse GFs proliferated and produced large amounts of anti-inflammatory cytokines and tissue inhibitor of metalloproteinase-1 (Timp-1). GFs deposited on the adventitia of abdominal aorta survived, proliferated, and organized as a layer structure. Furthermore, GFs locally produced Il-10, TGF-ß, and Timp-1. In a mouse elastase-induced AAA model, GFs prevented both macrophage and lymphocyte accumulations, matrix degradation, and aneurysm growth. In an Angiotensin II/anti-TGF-ß model of aneurysm rupture, GF cell-based treatment limited the extent of aortic dissection, prevented abdominal aortic rupture, and increased survival. Specific deletion of Timp-1 in GFs abolished the beneficial effect of cell therapy in both AAA mouse models. CONCLUSIONS: GF cell-based therapy is a promising approach to inhibit aneurysm progression and rupture through local production of Timp-1.


Subject(s)
Aortic Aneurysm, Abdominal/metabolism , Aortic Rupture/metabolism , Fibroblasts/metabolism , Gingiva/metabolism , Tissue Inhibitor of Metalloproteinase-1/metabolism , Angiotensin II/pharmacology , Animals , Aorta, Abdominal/metabolism , Disease Models, Animal , Extracellular Matrix/drug effects , Extracellular Matrix/metabolism , Mice, Inbred C57BL , Mice, Knockout , Protective Agents/pharmacology , Transforming Growth Factor beta/metabolism
17.
J Am Coll Cardiol ; 68(25): 2776-2793, 2016 Dec 27.
Article in English | MEDLINE | ID: mdl-28007141

ABSTRACT

BACKGROUND: Innate immune responses activated through myeloid cells contribute to the initiation, progression, and complications of atherosclerosis in experimental models. However, the critical upstream pathways that link innate immune activation to foam cell formation are still poorly identified. OBJECTIVES: This study sought to investigate the hypothesis that activation of the triggering receptor expressed on myeloid cells (TREM-1) plays a determinant role in macrophage atherogenic responses. METHODS: After genetically invalidating Trem-1 in chimeric Ldlr-/-Trem-1-/- mice and double knockout ApoE-/-Trem-1-/- mice, we pharmacologically inhibited Trem-1 using LR12 peptide. RESULTS: Ldlr-/- mice reconstituted with bone marrow deficient for Trem-1 (Trem-1-/-) showed a strong reduction of atherosclerotic plaque size in both the aortic sinus and the thoracoabdominal aorta, and were less inflammatory compared to plaques of Trem-1+/+ chimeric mice. Genetic invalidation of Trem-1 led to alteration of monocyte recruitment into atherosclerotic lesions and inhibited toll-like receptor 4 (TLR 4)-initiated proinflammatory macrophage responses. We identified a critical role for Trem-1 in the upregulation of cluster of differentiation 36 (CD36), thereby promoting the formation of inflammatory foam cells. Genetic invalidation of Trem-1 in ApoE-/-/Trem-1-/- mice or pharmacological blockade of Trem-1 in ApoE-/- mice using LR-12 peptide also significantly reduced the development of atherosclerosis throughout the vascular tree, and lessened plaque inflammation. TREM-1 was expressed in human atherosclerotic lesions, mainly in lipid-rich areas with significantly higher levels of expression in atheromatous than in fibrous plaques. CONCLUSIONS: We identified TREM-1 as a major upstream proatherogenic receptor. We propose that TREM-1 activation orchestrates monocyte/macrophage proinflammatory responses and foam cell formation through coordinated and combined activation of CD36 and TLR4. Blockade of TREM-1 signaling may constitute an attractive novel and double-hit approach for the treatment of atherosclerosis.


Subject(s)
Carotid Arteries/pathology , Carotid Artery Diseases/therapy , Genetic Therapy/methods , Immunity, Innate , Lauric Acids/pharmacology , Membrane Glycoproteins/biosynthesis , Plaque, Atherosclerotic/therapy , Receptors, Immunologic/biosynthesis , Rhodamines/pharmacology , Animals , Apoptosis , Carotid Arteries/metabolism , Carotid Artery Diseases/immunology , Carotid Artery Diseases/metabolism , Cells, Cultured , Disease Models, Animal , Enzyme-Linked Immunosorbent Assay , Humans , Macrophages/immunology , Macrophages/metabolism , Macrophages/pathology , Male , Membrane Glycoproteins/antagonists & inhibitors , Mice , Mice, Inbred C57BL , Mice, Transgenic , Oligopeptides , Plaque, Atherosclerotic/immunology , Plaque, Atherosclerotic/metabolism , Receptors, Immunologic/antagonists & inhibitors , Triggering Receptor Expressed on Myeloid Cells-1
SELECTION OF CITATIONS
SEARCH DETAIL
...