Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Physiol Biochem ; 204: 108105, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37883918

ABSTRACT

Cadmium (Cd) activates the DNA damage response (DDR) and inhibits the cell cycle in Arabidopsis thaliana through the transcription factor SUPPRESSOR OF GAMMA RESPONSE 1. The aim of this study was to investigate which individual leaf best reflects the Cd-induced effects on the regulation of the DDR and cell cycle progression in rosettes, enabling a more profound interpretation of the rosette data since detailed information, provided by the individual leaf responses, is lost when studying the whole rosette. Wild-type A. thaliana plants were cultivated in hydroponics and exposed to different Cd concentrations. Studied individual leaves were leaf 1 and 2, which emerged before Cd exposure, and leaf 3, which emerged upon Cd exposure. The DDR and cell cycle regulation were studied in rosettes as well as individual leaves after several days of Cd exposure. Varying concentration-dependent response patterns were observed between the entire rosette and individual leaves. Gene expression of selected DDR and cell cycle regulators showed higher similarity in their response between the rosette and the individual leaf emerged during Cd exposure than between both individual leaves. The same pattern was observed for plant growth and cell cycle-related parameters. We conclude that Cd-induced effects on the regulation of the DDR and cell cycle progression in the leaf that emerged during Cd exposure, resemble those observed in the rosette the most, which contributes to the interpretation of the rosette data in the framework of plant development and after exposure to Cd.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Cadmium/metabolism , Plant Leaves/metabolism , Cell Cycle/genetics , DNA Damage , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Gene Expression Regulation, Plant
2.
Free Radic Biol Med ; 199: 81-96, 2023 04.
Article in English | MEDLINE | ID: mdl-36775109

ABSTRACT

Cadmium (Cd) is one of the most toxic compounds released into our environment and is harmful to human health, urging the need to remediate Cd-polluted soils. To this end, it is important to increase our insight into the molecular mechanisms underlying Cd stress responses in plants, ultimately leading to acclimation, and to develop novel strategies for economic validation of these soils. Albeit its non-redox-active nature, Cd causes a cellular oxidative challenge, which is a crucial determinant in the onset of diverse signalling cascades required for long-term acclimation and survival of Cd-exposed plants. Although it is well known that Cd affects reactive oxygen species (ROS) production and scavenging, the contribution of individual organelles to Cd-induced oxidative stress responses is less well studied. Here, we provide an overview of the current information on Cd-induced organellar responses with special attention to redox biology. We propose that an integration of organellar ROS signals with other signalling pathways is essential to finetune plant acclimation to Cd stress.


Subject(s)
Cadmium , Oxidative Stress , Humans , Cadmium/toxicity , Reactive Oxygen Species/metabolism , Plants/metabolism , Acclimatization , Biology
3.
Int J Mol Sci ; 20(16)2019 Aug 15.
Article in English | MEDLINE | ID: mdl-31443183

ABSTRACT

Anthropogenic pollution of agricultural soils with cadmium (Cd) should receive adequate attention as Cd accumulation in crops endangers human health. When Cd is present in the soil, plants are exposed to it throughout their entire life cycle. As it is a non-essential element, no specific Cd uptake mechanisms are present. Therefore, Cd enters the plant through transporters for essential elements and consequently disturbs plant growth and development. In this review, we will focus on the effects of Cd on the most important events of a plant's life cycle covering seed germination, the vegetative phase and the reproduction phase. Within the vegetative phase, the disturbance of the cell cycle by Cd is highlighted with special emphasis on endoreduplication, DNA damage and its relation to cell death. Furthermore, we will discuss the cell wall as an important structure in retaining Cd and the ability of plants to actively modify the cell wall to increase Cd tolerance. As Cd is known to affect concentrations of reactive oxygen species (ROS) and phytohormones, special emphasis is put on the involvement of these compounds in plant developmental processes. Lastly, possible future research areas are put forward and a general conclusion is drawn, revealing that Cd is agonizing for all stages of plant development.


Subject(s)
Cadmium/toxicity , Seeds/drug effects , Cell Wall/drug effects , Cell Wall/metabolism , Germination/drug effects , Oxidative Stress/drug effects , Plant Development/drug effects , Seeds/growth & development , Seeds/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...