Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters











Publication year range
1.
J Phys Chem B ; 2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39298653

ABSTRACT

Membrane-embedded mechanosensitive (MS) proteins, including ion channels and G-protein coupled receptors (GPCRs), are essential for the transduction of external mechanical stimuli into biological signals. The angiotensin II type 1 (AT1) receptor plays many important roles in cardiovascular regulation and is associated with diseases such as hypertension and congestive heart failure. The membrane-mediated activation of the AT1 receptor is not well understood, despite this being one of the most widely studied GPCRs within the context of biased agonism. Here, we use extensive molecular dynamics (MD) simulations to characterize the effect of the local membrane environment on the activation of the AT1 receptor. We show that membrane thickness plays an important role in the stability of active and inactive states of the receptor, as well as the dynamic interchange between states. Furthermore, our simulation results show that membrane tension is effective in driving large-scale structural changes in the inactive state such as the outward movement of transmembrane helix 6 to stabilize intermediate active-like conformations. We conclude by comparing our simulation observations with AlphaFold 2 predictions, as a proxy to experimental structures, to provide a framework for how membrane mediated stimuli can facilitate activation of the AT1 receptor through the ß-arrestin signaling pathway.

2.
PLoS One ; 19(9): e0309553, 2024.
Article in English | MEDLINE | ID: mdl-39241014

ABSTRACT

Cation conducting channelrhodopsins (ChRs) are a popular tool used in optogenetics to control the activity of excitable cells and tissues using light. ChRs with altered ion selectivity are in high demand for use in different cell types and for other specialized applications. However, a detailed mechanism of ion permeation in ChRs is not fully resolved. Here, we use complementary experimental and computational methods to uncover the mechanisms of cation transport and valence selectivity through the channelrhodopsin chimera, C1C2, in the high- and low-conducting open states. Electrophysiology measurements identified a single-residue substitution within the central gate, N297D, that increased Ca2+ permeability vs. Na+ by nearly two-fold at peak current, but less so at stationary current. We then developed molecular models of dimeric wild-type C1C2 and N297D mutant channels in both open states and calculated the PMF profiles for Na+ and Ca2+ permeation through each protein using well-tempered/multiple-walker metadynamics. Results of these studies agree well with experimental measurements and demonstrate that the pore entrance on the extracellular side differs from original predictions and is actually located in a gap between helices I and II. Cation transport occurs via a relay mechanism where cations are passed between flexible carboxylate sidechains lining the full length of the pore by sidechain swinging, like a monkey swinging on vines. In the mutant channel, residue D297 enhances Ca2+ permeability by mediating the handoff between the central and cytosolic binding sites via direct coordination and sidechain swinging. We also found that altered cation binding affinities at both the extracellular entrance and central binding sites underly the distinct transport properties of the low-conducting open state. This work significantly advances our understanding of ion selectivity and permeation in cation channelrhodopsins and provides the insights needed for successful development of new ion-selective optogenetic tools.


Subject(s)
Calcium , Channelrhodopsins , Molecular Dynamics Simulation , Sodium , Sodium/metabolism , Calcium/metabolism , Channelrhodopsins/metabolism , Channelrhodopsins/genetics , Channelrhodopsins/chemistry , Animals , Ion Transport , Humans , HEK293 Cells , Ion Channel Gating
3.
Langmuir ; 40(20): 10615-10622, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38716958

ABSTRACT

Nanoporous, gas-selective membranes have shown encouraging results for the removal of CO2 from flue gas, yet the optimal design for such membranes is often unknown. Therefore, we used molecular dynamics simulations to elucidate the behavior of CO2 within aqueous and ionic liquid (IL) systems ([EMIM][TFSI] and [OMIM][TFSI]), both confined individually and as an interfacial aqueous/IL system. We found that within aqueous systems the mobility of CO2 is reduced due to interactions between the CO2 oxygens and hydroxyl groups on the pore surface. Within the IL systems, we found that confinement has a greater effect on the [EMIM][TFSI] system as opposed to the [OMIM][TFSI] system. Paradoxically, the larger and more asymmetrical [OMIM]+ molecule undergoes less efficient packing, resulting in fewer confinement effects. Free energy surfaces of the nanoconfined aqueous/IL interface demonstrate that CO2 will transfer spontaneously from the aqueous to the IL phase.

4.
ACS Omega ; 9(16): 18687, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38680303

ABSTRACT

[This corrects the article DOI: 10.1021/acsomega.3c02630.].

5.
J Phys Chem B ; 127(49): 10573-10582, 2023 Dec 14.
Article in English | MEDLINE | ID: mdl-38048268

ABSTRACT

A major hurdle in utilizing carbon dioxide (CO2) lies in separating it from industrial flue gas mixtures and finding suitable storage methods that enable its application in various industries. To address this issue, we utilized a combination of molecular dynamics simulations and experiments to investigate the behavior of CO2 in common room-temperature ionic liquids (RTIL) when in contact with aqueous interfaces. Our investigation of RTILs, [EMIM][TFSI] and [OMIM][TFSI], and their interaction with a pure water layer mimics the environment of a previously developed ultrathin enzymatic liquid membrane for CO2 separation. We analyzed diffusion constants and viscosity, which reveals that CO2 molecules exhibit faster mobility within the selected ILs compared to what would be predicted solely based on the viscosity of the liquids using the standard Einstein-Stokes relation. Moreover, we calculated the free energy of translocation for various species across the aqueous-IL interface, including CO2 and HCO3-. Free energy profiles demonstrate that CO2 exhibits a more favorable partitioning behavior in the RTILs compared to that in pure water, while a significant barrier hinders the movement of HCO3- from the aqueous layer. Experimental measurement of the CO2 transport in the RTILs corroborates the model. These findings strongly suggest that hydrophobic RTILs could serve as a promising option for selectively transporting CO2 from aqueous media and concentrating it as a preliminary step toward storage.

6.
Phys Chem Chem Phys ; 25(45): 30880-30886, 2023 Nov 22.
Article in English | MEDLINE | ID: mdl-37947771

ABSTRACT

Fentanyl is a synthetic opioid used for managing chronic pain. Due to its higher potency (50-100×) than morphine, fentanyl is also an abused drug. A sensor that could detect illicit fentanyl by identifying its thermally degraded fragments would be helpful to law enforcement. While experimental studies have probed the thermal degradation of fentanyl, little theoretical work has been done to understand the mechanism. Here, we studied the thermal degradation pathways of fentanyl using extensive ab initio molecular dynamics simulations combined with enhanced sampling via multiple-walker metadynamics. We calculated the free energy profile for each bond suggested earlier as a potential degradation point to map the thermodynamic driving forces. We also estimated the forward attempt rate of each bond degradation reaction to gain information about degradation kinetics.


Subject(s)
Fentanyl , Illicit Drugs , Temperature , Analgesics, Opioid , Morphine
7.
ACS Omega ; 8(41): 37830-37841, 2023 Oct 17.
Article in English | MEDLINE | ID: mdl-37867662

ABSTRACT

Continued dependence on crude oil and natural gas resources for fossil fuels has caused global atmospheric carbon dioxide (CO2) emissions to increase to record-setting proportions. There is an urgent need for efficient and inexpensive carbon sequestration systems to mitigate large-scale emissions of CO2 from industrial flue gas. Carbonic anhydrase (CA) has shown high potential for enhanced CO2 capture applications compared to conventional absorption-based methods currently utilized in various industrial settings. This study aims to understand structural aspects that contribute to the stability of CA enzymes critical for their applications in industrial processes, which require the ability to withstand conditions different from those in their native environments. Here, we evaluated the thermostability and enzyme activity of mesophilic and thermophilic CA variants at different temperature conditions and in the presence of atmospheric gas pollutants like nitrogen oxides and sulfur oxides. Based on our enzyme activity assays and molecular dynamics simulations, we see increased conformational stability and CA activity levels in thermostable CA variants incubated week-long at different temperature conditions. The thermostable CA variants also retained high levels of CA activity despite changes in solution pH due to increasing NO and SO2 concentrations. A loss of CA activity was observed only at high concentrations of NO/SO2 that possibly can be minimized with the appropriate buffered solutions.

8.
Nat Commun ; 14(1): 4690, 2023 08 04.
Article in English | MEDLINE | ID: mdl-37542033

ABSTRACT

The Angiotensin II Type 1 (AT1) receptor is one of the most widely studied GPCRs within the context of biased signaling. While the AT1 receptor is activated by agonists such as the peptide AngII, it can also be activated by mechanical stimuli such as membrane stretch or shear in the absence of a ligand. Despite the importance of mechanical activation of the AT1 receptor in biological processes such as vasoconstriction, little is known about the structural changes induced by external physical stimuli mediated by the surrounding lipid membrane. Here, we present a systematic simulation study that characterizes the activation of the AT1 receptor under various membrane environments and mechanical stimuli. We show that stability of the active state is highly sensitive to membrane thickness and tension. Structural comparison of membrane-mediated vs. agonist-induced activation shows that the AT1 receptor has distinct active conformations. This is supported by multi-microsecond free energy calculations that show unique landscapes for the inactive and various active states. Our modeling results provide structural insights into the mechanical activation of the AT1 receptor and how it may produce different functional outcomes within the framework of biased agonism.


Subject(s)
Angiotensin II , Receptor, Angiotensin, Type 1 , Angiotensin II/pharmacology , Receptor, Angiotensin, Type 1/agonists , Signal Transduction , Vasoconstriction
9.
ACS Chem Biol ; 18(8): 1797-1807, 2023 08 18.
Article in English | MEDLINE | ID: mdl-37487226

ABSTRACT

Cyanobacteria are tremendous producers of biologically active natural products, including the potent anti-inflammatory compound tolypodiol. However, linking biosynthetic gene clusters with compound production in cyanobacteria has lagged behind that in other bacterial genera. Tolypodiol is a meroterpenoid originally isolated from the cyanobacterium HT-58-2. Here we describe the identification of the tolypodiol biosynthetic gene cluster through heterologous expression in Anabaena and in vitro protein assays of a methyltransferase found in the tolypodiol biosynthetic gene cluster. We have also identified similar biosynthetic gene clusters in cyanobacterial and actinobacterial genomes, suggesting that meroterpenoids with structural similarity to the tolypodiols may be synthesized by other microbes. We also report the identification of two new analogs of tolypodiol that we have identified in both the original and heterologous producer. This work further illustrates the usefulness of Anabaena as a heterologous expression host for cyanobacterial compounds and how integrated approaches can help to link natural product compounds with their producing biosynthetic gene clusters.


Subject(s)
Biological Products , Diterpenes , Methyltransferases , Multigene Family
10.
Front Chem ; 11: 1159032, 2023.
Article in English | MEDLINE | ID: mdl-37292176

ABSTRACT

The mechanosensitive (MS) channel of large conductance, MscL, is the high-tension threshold osmolyte release valve that limits turgor pressure in bacterial cells in the event of drastic hypoosmotic shock. Despite MscL from Mycobacterium tuberculosis (TbMscL) being the first structurally characterized MS channel, its protective mechanism of activation at nearly-lytic tensions has not been fully understood. Here, we describe atomistic simulations of expansion and opening of wild-type (WT) TbMscL in comparison with five of its gain-of-function (GOF) mutants. We show that under far-field membrane tension applied to the edge of the periodic simulation cell, WT TbMscL expands into a funnel-like structure with trans-membrane helices bent by nearly 70°, but does not break its 'hydrophobic seal' within extended 20 µs simulations. GOF mutants carrying hydrophilic substitutions in the hydrophobic gate of increasing severity (A20N, V21A, V21N, V21T and V21D) also quickly transition into funnel-shaped conformations but subsequently fully open within 1-8 µs. This shows that solvation of the de-wetted (vapor-locked) constriction is the rate-limiting step in the gating of TbMscL preceded by area-buffering silent expansion. Pre-solvated gates in these GOF mutants reduce this transition barrier according to hydrophilicity and the most severe V21D eliminates it. We predict that the asymmetric shape-change of the periplasmic side of the channel during the silent expansion provides strain-buffering to the outer leaflet thus re-distributing the tension to the inner leaflet, where the gate resides.

11.
J Chem Theory Comput ; 19(1): 363-372, 2023 Jan 10.
Article in English | MEDLINE | ID: mdl-36579901

ABSTRACT

Biological membranes are fundamental components of living organisms that play an undeniable role in their survival. Molecular dynamics (MD) serves as an essential computational tool for studying biomembranes on molecular and atomistic scales. The status quo of MD simulations of biomembranes studies a nanometer-sized membrane patch periodically extended under periodic boundary conditions (PBCs). In nature, membranes are usually composed of different lipids in their two layers (referred to as leaflets). This compositional asymmetry imposes a fixed ratio of lipid numbers between the two leaflets in a periodically constrained membrane, which needs to be set appropriately. The widely adopted methods of defining a leaflet lipid ratio suffer from the lack of control over the mechanical tension of each leaflet, which could significantly influence research findings. In this study, we investigate the role of membrane-building protocol and the resulting initial stress state on the interaction between small molecules and asymmetric membranes. We model the outer membrane of Pseudomonas aeruginosa bacteria using two different building protocols and probe their interactions with the Pseudomonas quinolone signal (PQS). Our results show that differential stress could shift the position of free energy minimum for the PQS molecule between the two leaflets of the asymmetric membrane. This work provides critical insights into the relationship between the initial per-leaflet tension and the spontaneous intercalation of PQS.


Subject(s)
Bacterial Outer Membrane , Molecular Dynamics Simulation , Cell Membrane , Pseudomonas aeruginosa , Lipids , Lipid Bilayers
12.
J Phys Condens Matter ; 34(17)2022 Feb 25.
Article in English | MEDLINE | ID: mdl-35086067

ABSTRACT

We demonstrate theoretically the possibility of spinodal de-wetting in heterostructures made of light-atom liquids (hydrogen, helium, and nitrogen) deposited on suspended graphene. Extending our theory of film growth on two-dimensional (2D) materials to include analysis of surface instabilities via the hydrodynamic Cahn-Hilliard-type equation, we characterize in detail the spatial and temporal scales of the resulting spinodal de-wetting patterns. Both linear stability analysis and direct numerical simulations of the surface hydrodynamics show micron-sized (generally material dependent) patterns of 'dry' regions. The physical reason for the development of such instabilities on graphene can be traced back to the inherently weak van der Waals interactions between atomically thin materials and atoms in the liquid. Thus 2D materials could represent a new theoretical and technological platform for studies of spinodal de-wetting.

13.
Biophys J ; 120(2): 232-242, 2021 01 19.
Article in English | MEDLINE | ID: mdl-33333032

ABSTRACT

Membrane tension perceived by mechanosensitive (MS) proteins mediates cellular responses to mechanical stimuli and osmotic stresses, and it also guides multiple biological functions including cardiovascular control and development. In bacteria, MS channels function as tension-activated pores limiting excessive turgor pressure, with MS channel of large conductance (MscL) acting as an emergency release valve preventing cell lysis. Previous attempts to simulate gating transitions in MscL by either directly applying steering forces to the protein or by increasing the whole-system tension were not fully successful and often disrupted the integrity of the system. We present a novel, to our knowledge, locally distributed tension molecular dynamics (LDT-MD) simulation method that allows application of forces continuously distributed among lipids surrounding the channel using a specially constructed collective variable. We report reproducible and reversible transitions of MscL to the open state with measured parameters of lateral expansion and conductivity that exactly satisfy experimental values. The LDT-MD method enables exploration of the MscL-gating process with different pulling velocities and variable tension asymmetry between the inner and outer membrane leaflets. We use LDT-MD in combination with well-tempered metadynamics to reconstruct the tension-dependent free-energy landscape for the opening transition in MscL. The flexible definition of the LDT collective variable allows general application of our method to study mechanical activation of any membrane-embedded protein.


Subject(s)
Escherichia coli Proteins , Molecular Dynamics Simulation , Escherichia coli Proteins/metabolism , Ion Channel Gating , Ion Channels/metabolism , Mechanotransduction, Cellular
14.
J Phys Chem B ; 124(32): 6963-6971, 2020 08 13.
Article in English | MEDLINE | ID: mdl-32667795

ABSTRACT

Characterization of the internal mechanical state of model lipid membranes is essential to understand the microscopic underpinnings of biological functions such as membrane fission and organelle shaping within the context of elastic theories such as the Helfrich framework. Here, we compute lateral stress or pressure profiles from molecular dynamics simulations of lipid bilayers and water-vacuum interfaces to understand the role that solvent treatment and force-field parametrization plays on the local mechanical features of membranes. We focus on two atomistic models, GROMOS 43A1-S3 and CHARMM36, and several variants of the MARTINI coarse-grained force-field, including the single-bead nonpolar water, three-point polarizable water, big multipole water, and solvent-free variants. Our results show that the various atomistic and coarse-grained force-fields produce contrasting lateral stress profiles as a result of the balance of solvent-solvent and solvent-solute forces at the hydrocarbon-water interface and fundamentally different treatment of pairwise (e.g., van der Waals, Coulomb, etc.) and multibody interactions (angles and torsions). Numerical integration of the second moment of the bilayer stress profiles indicates that different local distributions of repulsive and attractive stresses across the membrane, due to distinct force-field parametrizations, may result in substantial variations in macroscopic elastic properties.


Subject(s)
Lipid Bilayers , Molecular Dynamics Simulation , Solvents , Thermodynamics , Water
15.
Annu Rev Phys Chem ; 71: 461-484, 2020 04 20.
Article in English | MEDLINE | ID: mdl-32155383

ABSTRACT

Ions transiting biomembranes might pass readily from water through ion-specific membrane proteins if these protein channels provide environments similar to the aqueous solution hydration environment. Indeed, bulk aqueous solution is an important reference condition for the ion permeation process. Assessment of this hydration mimicry concept depends on understanding the hydration structure and free energies of metal ions in water in order to provide a comparison for the membrane channel environment. To refine these considerations, we review local hydration structures of ions in bulk water and the molecular quasi-chemical theory that provides hydration free energies. In doing so, we note some current views of ion binding to membrane channels and suggest new physical chemical calculations and experiments that might further clarify the hydration mimicry concept.

16.
Soft Matter ; 15(24): 4961-4975, 2019 Jun 19.
Article in English | MEDLINE | ID: mdl-31172154

ABSTRACT

Coiled-coils are filamentous proteins that form the basic building block of important force-bearing cellular elements, such as intermediate filaments and myosin motors. In addition to their biological importance, coiled-coil proteins are increasingly used in new biomaterials including fibers, nanotubes, or hydrogels. Coiled-coils undergo a structural transition from an α-helical coil to an unfolded state upon extension, which allows them to sustain large strains and is critical for their biological function. By performing equilibrium and out-of-equilibrium all-atom molecular dynamics (MD) simulations of coiled-coils in explicit solvent, we show that two-state models based on Kramers' or Bell's theories fail to predict the rate of unfolding at high pulling rates. We further show that an atomistically informed continuum rod model accounting for phase transformations and for the hydrodynamic interactions with the solvent can reconcile two-state models with our MD results. Our results show that frictional forces, usually neglected in theories of fibrous protein unfolding, reduce the thermodynamic force acting on the interface, and thus control the dynamics of unfolding at different pulling rates. Our results may help interpret MD simulations at high pulling rates, and could be pertinent to cytoskeletal networks or protein-based artificial materials subjected to shocks or blasts.


Subject(s)
Models, Molecular , Protein Unfolding , Proteins/chemistry , Cytosol/chemistry , Cytosol/metabolism , Molecular Dynamics Simulation , Protein Conformation , Proteins/metabolism
17.
Chem Sci ; 9(34): 6997-7008, 2018 Sep 14.
Article in English | MEDLINE | ID: mdl-30210775

ABSTRACT

Teixobactin (Txb) is a recently discovered antibiotic against Gram-positive bacteria that induces no detectable resistance. The bactericidal mechanism is believed to be the inhibition of cell wall biosynthesis by Txb binding to lipid II and lipid III. Txb binding specificity likely arises from targeting of the shared lipid component, the pyrophosphate moiety. Despite synthesis and functional assessment of numerous chemical analogs of Txb, and consequent identification of the Txb pharmacophore, the detailed structural information of Txb-substrate binding is still lacking. Here, we use molecular modeling and microsecond-scale molecular dynamics simulations to capture the formation of Txb-lipid II complexes at a membrane surface. Two dominant binding conformations were observed, both showing characteristic lipid II phosphate binding by the Txb backbone amides near the C-terminal cyclodepsipeptide (d-Thr8-Ile11) ring. Additionally, binding by Txb also involved the side chain hydroxyl group of Ser7, as well as a secondary phosphate binding provided by the side chain of l-allo-enduracididine. Interestingly, those conformations differ by swapping two groups of hydrogen bond donors that coordinate the two phosphate moieties of lipid II, resulting in opposite orientations of lipid II binding. In addition, residues d-allo-Ile5 and Ile6 serve as the membrane anchors in both Txb conformations, regardless of the detailed phosphate binding interactions near the cyclodepsipeptide ring. The role of hydrophobic residues in Txb activity is primarily for its membrane insertion, and subsidiarily to provide non-polar interactions with the lipid II tail. Based on the Txb-lipid II interactions captured in their complexes, as well as their partitioning depths into the membrane, we propose that the bactericidal mechanism of Txb is to arrest cell wall synthesis by selectively inhibiting the transglycosylation of peptidoglycan, while possibly leaving the transpeptidation step unaffected. The observed "pyrophosphate caging" mechanism of lipid II inhibition appears to be similar to some lantibiotics, but different from that of vancomycin or bacitracin.

18.
Nat Commun ; 9(1): 2200, 2018 06 01.
Article in English | MEDLINE | ID: mdl-29855468

ABSTRACT

The original version of this Article contained an error in the spelling of the author Stanley S. Chou, which was incorrectly given as Stan Chou. This has now been corrected in both the PDF and HTML versions of the Article.

19.
Nat Commun ; 9(1): 990, 2018 03 07.
Article in English | MEDLINE | ID: mdl-29515116

ABSTRACT

The limited flux and selectivities of current carbon dioxide membranes and the high costs associated with conventional absorption-based CO2 sequestration call for alternative CO2 separation approaches. Here we describe an enzymatically active, ultra-thin, biomimetic membrane enabling CO2 capture and separation under ambient pressure and temperature conditions. The membrane comprises a ~18-nm-thick close-packed array of 8 nm diameter hydrophilic pores that stabilize water by capillary condensation and precisely accommodate the metalloenzyme carbonic anhydrase (CA). CA catalyzes the rapid interconversion of CO2 and water into carbonic acid. By minimizing diffusional constraints, stabilizing and concentrating CA within the nanopore array to a concentration 10× greater than achievable in solution, our enzymatic liquid membrane separates CO2 at room temperature and atmospheric pressure at a rate of 2600 GPU with CO2/N2 and CO2/H2 selectivities as high as 788 and 1500, respectively, the highest combined flux and selectivity yet reported for ambient condition operation.

20.
Biochim Biophys Acta Biomembr ; 1860(5): 1216-1230, 2018 May.
Article in English | MEDLINE | ID: mdl-29447917

ABSTRACT

The envelope (E) protein of Dengue virus rearranges to a trimeric hairpin to mediate fusion of the viral and target membranes, which is essential for infectivity. Insertion of E into the target membrane serves to anchor E and possibly also to disrupt local order within the membrane. Both aspects are likely to be affected by the depth of insertion, orientation of the trimer with respect to the membrane normal, and the interactions that form between trimer and membrane. In the present work, we resolved the depth of insertion, the tilt angle, and the fundamental interactions for the soluble portion of Dengue E trimers (sE) associated with planar lipid bilayer membranes of various combinations of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-rac-glycerol (POPG), 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE), and cholesterol (CHOL) by neutron reflectivity (NR) and by molecular dynamics (MD) simulations. The results show that the tip of E containing the fusion loop (FL) is located at the interface of the headgroups and acyl chains of the outer leaflet of the lipid bilayers, in good agreement with prior predictions. The results also indicate that E tilts with respect to the membrane normal upon insertion, promoted by either the anionic lipid POPG or CHOL. The simulations show that tilting of the protein correlates with hydrogen bond formation between lysines and arginines located on the sides of the trimer close to the tip (K246, K247, and R73) and nearby lipid headgroups. These hydrogen bonds provide a major contribution to the membrane anchoring and may help to destabilize the target membrane.


Subject(s)
Lipid Bilayers/metabolism , Viral Envelope Proteins/metabolism , Virus Internalization , Amino Acid Sequence , Animals , Cells, Cultured , Hydrogen Bonding , Lipid Bilayers/chemistry , Membrane Fusion , Models, Molecular , Molecular Dynamics Simulation , Neutrons , Protein Binding , Spodoptera , Viral Envelope Proteins/chemistry , Virus Attachment
SELECTION OF CITATIONS
SEARCH DETAIL