Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 25(10)2024 May 10.
Article in English | MEDLINE | ID: mdl-38791233

ABSTRACT

Lions (Panthera leo) play a crucial ecological role in shaping and maintaining fragile ecosystems within Africa. Conservation efforts should focus on genetic variability within wild populations when considering reintroduction attempts. We studied two groups of lions from two conservation sites located in Zambia and Zimbabwe to determine their genetic make-up, information that is usually unknown to the sites. In this study, we analysed 17 specimens for cytb and seven microsatellite markers to ascertain family relationships and genetic diversity previously obtained by observational studies. We then produced a standardised haplogroup phylogeny using all available entire mitogenomes, as well as calculating a revised molecular clock. The modern lion lineage diverged ~151 kya and was divided into two subspecies, both containing three distinct haplogroups. We confirm that Panthera leo persica is not a subspecies, but rather a haplogroup of the northern P.l. leo that exited Africa at least ~31 kya. The progenitor to all lions existed ~1.2 Mya, possibly in SE Africa, and later exited Africa and split into the two cave lion lineages ~175 kya. Species demography is correlated to major climactic events. We now have a detailed phylogeny of lion evolution and an idea of their conservation status given the threat of climate change.


Subject(s)
Genome, Mitochondrial , Lions , Phylogeny , Animals , Lions/genetics , Lions/classification , Genome, Mitochondrial/genetics , Caves , Genetic Variation , Haplotypes , Microsatellite Repeats/genetics , Grassland , Zimbabwe , Evolution, Molecular , Zambia , Cytochromes b/genetics , DNA, Mitochondrial/genetics
2.
Life (Basel) ; 13(1)2022 Dec 21.
Article in English | MEDLINE | ID: mdl-36675965

ABSTRACT

The Turkey oak (Quercus cerris L.) is widely distributed in Italy, where it is the ecologically dominant oak on sandy and acidic soil. In this work, we analysed 23 natural populations by means of eight SSR (microsatellite) markers, to obtain the first synthetic map of genetic variability for this species and to study its dispersion during the Holocene, due to the possibility that at least one refugium during the Last Glacial Maximum was in Italy. The analyses showed a good amount of genetic variability together with fair differentiation between populations, as indicated by FST = 0.059. A Bayesian analysis of the amount of admixture among populations revealed the presence of four putative gene pools of origin and a rough subdivision of the populations according to their geographic location, as confirmed by the spatial analysis. No evidence for the existence of putative refugial populations was found; however, this study paves the way for the planning of conservation strategies also with regard to the relationship between Turkey oak and other oak species in Italy.

3.
J Fish Biol ; 98(5): 1433-1449, 2021 May.
Article in English | MEDLINE | ID: mdl-33486760

ABSTRACT

Two fluviolacustrine lineages (SI1 Barbus and SI2 Barbus) of the Barbus genus have been recently detected in the Apulia-Campania ichthyogeographic district (southern Italy). The aim of this study was to determine the taxonomic status of these lineages by comparing them with the two already-established Italian fluviolacustrine species Barbus plebejus and Barbus tyberinus through a more in-depth molecular and morphological investigation. Genetic analyses were performed on both mitochondrial (cytochrome b) and nuclear (growth hormone paralog 2) DNA markers, and morphological analyses were carried out on specific age classes and purebred populations. Molecular analyses detected four evolutionary lineages at the mitochondrial level, whereas the nuclear data set highlighted the strict evolutionary relation between B. plebejus sensu stricto and the new lineages, converged in the B. plebejus complex clade. The morphological analyses allowed us to discriminate SI1 Barbus and SI2 Barbus from both B. plebejus and B. tyberinus. The new taxa could be discriminated by the greatest maximum body height and the longest pre-orbital distance, respectively. Both the new lineages have longer ventral and pectoral fins than B. plebejus and B. tyberinus, a larger caudal fin than B. tyberinus and a lower number of scales along the lateral line than B. plebejus. Both molecular and morphological results suggested the two southern Italian lineages could be considered as distinct endemic species: the formal description of the new species Barbus samniticus sp. nov. (i.e., SI1 Barbus) and the revalidation of Barbus fucini Costa, 1853 (i.e., SI2 Barbus) were thus proposed, and, for both species, molecular and morphological diagnosis were provided.


Subject(s)
Biodiversity , Cyprinidae/classification , Phylogeny , Animals , Biological Evolution , Cyprinidae/anatomy & histology , Cyprinidae/genetics , Cytochromes b/genetics , Fish Proteins/genetics , Genetic Markers/genetics , Italy , Species Specificity
4.
Ecol Evol ; 10(16): 8959-8975, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32884671

ABSTRACT

The dispersal routes of taxa with transoceanic disjunctions remain poorly understood, with the potential roles of Antarctica not yet demonstrated. Mosses are suitable organisms to test direct intra-Antarctic dispersal, as major component of the extant Antarctic flora, with the cosmopolitan moss Bryum argenteum as ideal target species. We analyzed the genetic structure of B. argenteum to provide an evolutionary time frame for its radiation and shed light into its historical biogeography in the Antarctic region. We tested two alternative scenarios: (a) intra-Antarctic panmixia and (b) intra-Antarctic genetic differentiation. Furthermore, we tested for evidence of the existence of specific intra-Antarctic dispersal routes. Sixty-seven new samples (40 collected in Antarctica) were sequenced for ITS nrDNA and rps4 cpDNA regions, and phylogenetic trees of B. argenteum were constructed, with a focus on its Southern Hemisphere. Combining our new nrDNA dataset with previously published datasets, we estimated time-calibrated phylogenies based on two different substitution rates (derived from angiosperms and bryophytes) along with ancestral area estimations. Minimum spanning network and pairwise genetic distances were also calculated. B. argenteum was potentially distributed across Africa and Antarctica soon after its origin. Its earliest intra-Antarctic dispersal and diversification occurred during a warming period in the Pliocene. On the same timescale, a radiation took place involving a dispersal event from Antarctica to the sub-Antarctic islands. A more recent event of dispersal and diversification within Antarctica occurred during a warm period in the Pleistocene, creating favorable conditions also for its colonization outside the Antarctic continent worldwide. We provide evidence supporting the hypothesis that contemporary populations of B. argenteum in Antarctica integrate a history of both multiple long-range dispersal events and local persistence combined with in situ diversification. Our data support the hypothesis that B. argenteum has been characterized by strong connectivity within Antarctica, suggesting the existence of intra-Antarctic dispersal routes.

5.
Ecol Evol ; 9(18): 10185-10197, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31624544

ABSTRACT

The Italian peninsula is a biodiversity hotspot, with its freshwater fish fauna characterized by high levels of local endemism. Two endemic fluvio-lacustrine fishes of the genus Barbus (barbel, family Cyprinidae) have allopatric distributions in the Tyrrhenian and Adriatic basins of Italy. Barbus plebejus inhabits the mid- to northern Adriatic basins, while B. tyberinus is widespread in all central-northern basins draining into the Tyrrhenian Sea. For basins in Southern Italy draining into the southern parts of these seas, there remains a knowledge gap on their barbel populations due to no previous genetic and morphological studies, despite their apparent biogeographic isolation. Correspondingly, this study quantified the presence and distribution of barbels in the Adriatic and Tyrrhenian basins of Southern Italy through genetic and morphological analyses of 197 fish sampled across eight populations. Testing of how local isolation has influenced the evolution and persistence of these populations was completed by examining sequence variation at two mitochondrial loci (cytochrome b and D-loop) and performing geometric morphometric analyses of body shape, plus measuring 11 morphometric and meristic characters. Phylogenetic and morphological analyses revealed the presence of two genetically distinct lineages that differed significantly from adjacent B. tyberinus and B. plebejus populations. These two new taxa, here described as SI1 and SI2 Barbus lineages, are highly structured and reflect a complex mosaic biogeographic pattern that is strongly associated with the underlying hydrographical scenarios of the basins. The geographic isolation of these basins thus has high evolutionary importance that has to be considered for maintaining endemism.

SELECTION OF CITATIONS
SEARCH DETAIL