Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
Cell Stem Cell ; 31(4): 554-569.e17, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38579685

ABSTRACT

The YAP/Hippo pathway is an organ growth and size regulation rheostat safeguarding multiple tissue stem cell compartments. LATS kinases phosphorylate and thereby inactivate YAP, thus representing a potential direct drug target for promoting tissue regeneration. Here, we report the identification and characterization of the selective small-molecule LATS kinase inhibitor NIBR-LTSi. NIBR-LTSi activates YAP signaling, shows good oral bioavailability, and expands organoids derived from several mouse and human tissues. In tissue stem cells, NIBR-LTSi promotes proliferation, maintains stemness, and blocks differentiation in vitro and in vivo. NIBR-LTSi accelerates liver regeneration following extended hepatectomy in mice. However, increased proliferation and cell dedifferentiation in multiple organs prevent prolonged systemic LATS inhibition, thus limiting potential therapeutic benefit. Together, we report a selective LATS kinase inhibitor agonizing YAP signaling and promoting tissue regeneration in vitro and in vivo, enabling future research on the regenerative potential of the YAP/Hippo pathway.


Subject(s)
Protein Kinase Inhibitors , Protein Serine-Threonine Kinases , YAP-Signaling Proteins , Animals , Humans , Mice , Cell Proliferation , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Serine-Threonine Kinases/metabolism , Stem Cells/metabolism , Transcription Factors/metabolism , YAP-Signaling Proteins/agonists , YAP-Signaling Proteins/drug effects , YAP-Signaling Proteins/metabolism , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology
2.
J Med Chem ; 67(2): 1544-1562, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38175811

ABSTRACT

NLRP3 is a molecular sensor recognizing a wide range of danger signals. Its activation leads to the assembly of an inflammasome that allows for activation of caspase-1 and subsequent maturation of IL-1ß and IL-18, as well as cleavage of Gasdermin-d and pyroptotic cell death. The NLRP3 inflammasome has been implicated in a plethora of diseases including gout, type 2 diabetes, atherosclerosis, Alzheimer's disease, and cancer. In this publication, we describe the discovery of a novel, tricyclic, NLRP3-binding scaffold by high-throughput screening. The hit (1) could be optimized into an advanced compound NP3-562 demonstrating excellent potency in human whole blood and full inhibition of IL-1ß release in a mouse acute peritonitis model at 30 mg/kg po dose. An X-ray structure of NP3-562 bound to the NLRP3 NACHT domain revealed a unique binding mode as compared to the known sulfonylurea-based inhibitors. In addition, NP3-562 shows also a good overall development profile.


Subject(s)
Diabetes Mellitus, Type 2 , Gout , Mice , Animals , Humans , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Inflammasomes/metabolism , Diabetes Mellitus, Type 2/metabolism , Macrophages/metabolism , Interleukin-1beta/metabolism , Caspase 1/metabolism
3.
J Med Chem ; 66(21): 15042-15053, 2023 11 09.
Article in English | MEDLINE | ID: mdl-37906573

ABSTRACT

We describe the discovery and characterization of the supersoft topical JAK inhibitor 3(R), which is potent in biochemical and cellular assays as well as in human skin models. In blood, the neutral ester 3(R) is rapidly hydrolyzed (t1/2 ∼ 6 min) to the corresponding charged carboxylic acid 4 exhibiting >30-fold reduced permeability. Consequently, acid 4 does not reach the intracellular JAK kinases and is inactive in cellular assays and in blood. Thus, hydrolysis by blood esterases leads to the rapid deactivation of topically active ester 3(R) at a rate beyond the maximal hepatic clearance.


Subject(s)
Janus Kinase Inhibitors , Humans , Skin , Esterases , Hydrolysis , Esters
4.
ACS Med Chem Lett ; 14(6): 841-845, 2023 Jun 08.
Article in English | MEDLINE | ID: mdl-37312861

ABSTRACT

We present a novel concept for the design of supersoft topical drugs. Enzymatic cleavage of the carbonate ester of the potent pan Janus kinase (JAK) inhibitor 2 releases hydroxypyridine 3. Due to hydroxypyridine-pyridone tautomerism, 3 undergoes a rapid conformational change preventing the compound to assume the bioactive conformation required for binding to JAK kinases. We demonstrate that the hydrolysis in human blood and the subsequent shape change lead to the deactivation of 2.

5.
ACS Med Chem Lett ; 13(4): 658-664, 2022 Apr 14.
Article in English | MEDLINE | ID: mdl-35450354

ABSTRACT

Inappropriate activation of TLR7 and TLR8 is linked to several autoimmune diseases, such as lupus erythematosus. Here we report on the efficient structure-based optimization of the inhibition of TLR8, starting from a co-crystal structure of a small screening hit. Further optimization of the physicochemical properties for cellular potency and expansion of the structure-activity relationship for dual potency finally resulted in a highly potent TLR7/8 antagonist with demonstrated in vivo efficacy after oral dosing.

6.
J Med Chem ; 63(15): 8276-8295, 2020 08 13.
Article in English | MEDLINE | ID: mdl-32786235

ABSTRACT

Inappropriate activation of endosomal TLR7 and TLR8 occurs in several autoimmune diseases, in particular systemic lupus erythematosus (SLE). Herein, the development of a TLR8 antagonist competition assay and its application for hit generation of dual TLR7/8 antagonists are reported. The structure-guided optimization of the pyridone hit 3 using this biochemical assay in combination with cellular and TLR8 cocrystal structural data resulted in the identification of a highly potent and selective TLR7/8 antagonist (27) with in vivo efficacy. The two key steps for optimization were (i) a core morph guided by a TLR7 sequence alignment to achieve a dual TLR7/8 antagonism profile and (ii) introduction of a fluorine in the piperidine ring to reduce its basicity, resulting in attractive oral pharmacokinetic (PK) properties and improved TLR8 binding affinity.


Subject(s)
Lupus Erythematosus, Systemic/drug therapy , Pyridones/chemistry , Pyridones/pharmacology , Toll-Like Receptor 7/antagonists & inhibitors , Toll-Like Receptor 8/antagonists & inhibitors , Animals , Cells, Cultured , Drug Discovery , Humans , Indazoles/chemistry , Indazoles/pharmacokinetics , Indazoles/pharmacology , Lupus Erythematosus, Systemic/metabolism , Male , Mice, Inbred C57BL , Models, Molecular , Pyridones/pharmacokinetics , Rats, Sprague-Dawley , Toll-Like Receptor 7/chemistry , Toll-Like Receptor 7/metabolism , Toll-Like Receptor 8/chemistry , Toll-Like Receptor 8/metabolism
7.
Heliyon ; 5(11): e02849, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31768440

ABSTRACT

OBJECTIVE: To identify an agonist of RXRα and RARα with reduced undesired profiles of all-trans retinoic acid for differentiation-inducing therapy of acute promyelocytic leukemia (APL), such as its susceptibility to P450 enzyme, induction of P450 enzyme, increased sequestration by cellular retinoic acid binding protein and increased expression of P-glycoprotein, a virtual screening was performed. RESULTS AND CONCLUSION: In this study, a phenyl-thiazolyl-benzoic acid derivative (PTB) was identified as a potent agonist of RXRα and RARα. PTB was characterized in nuclear receptor binding, reporter gene, cell differentiation and cell growth assays. PTB bound directly to RXRα and RARα, but not to PPARα, δ(ß) or γ. PTB fully activated reporter genes with enhancer elements for RXRα/RXRα, and partially activated reporter genes with enhancer elements for RARα/RXRα, PPARδ(ß) and PPARγ. Furthermore, PTB induced differentiation and inhibited the growth of human APL cells. Thus, PTB is a novel dual agonist of RXRα and RARα and works as both a differentiation inducer and a proliferation inhibitor to leukemic cells.

8.
ACS Chem Biol ; 14(4): 587-593, 2019 04 19.
Article in English | MEDLINE | ID: mdl-30763067

ABSTRACT

The oncogenic V617F mutation lies in the pseudokinase domain of JAK2, marking it as a potential target for development of compounds that might inhibit the pathogenic activity of the mutant protein. We used differential scanning fluorimetry to identify compounds that bind the JAK2 pseudokinase domain. Crystal structures of five candidate compounds with the wild-type domain reveal their modes of binding. Exploration of analogs of screening hit BI-D1870 led to the identification of compound 2, a 123 nM ligand for the pseudokinase domain. Interestingly, crystal structures of the V617F domain in complex with two unrelated compounds reveal a conformation that is characteristic of the wild-type domain, rather than that previously observed for the V617F mutant. These structures suggest that certain ATP-site ligands can modulate the V617F allosteric site, thereby providing a mechanistic rationale for targeting the pseudokinase domain and a structural foundation for development of more potent and pseudokinase-selective compounds.


Subject(s)
Adenosine Triphosphate/metabolism , Janus Kinase 2/metabolism , Mutation , Cell Line , Crystallography, X-Ray , Humans , Janus Kinase 2/chemistry , Janus Kinase 2/genetics , Ligands , Phosphorylation , Protein Conformation
9.
J Med Chem ; 61(15): 6724-6735, 2018 08 09.
Article in English | MEDLINE | ID: mdl-29990434

ABSTRACT

The transcription factor RORγt is an attractive drug-target due to its role in the differentiation of IL-17 producing Th17 cells that play a critical role in the etiopathology of several autoimmune diseases. Identification of starting points for RORγt inverse agonists with good properties has been a challenge. We report the identification of a fragment hit and its conversion into a potent inverse agonist through fragment optimization, growing and merging efforts. Further analysis of the binding mode revealed that inverse agonism was achieved by an unusual mechanism. In contrast to other reported inverse agonists, there is no direct interaction or displacement of helix 12 observed in the crystal structure. Nevertheless, compound 9 proved to be efficacious in a delayed-type hypersensitivity (DTH) inflammation model in rats.


Subject(s)
Drug Discovery , Drug Inverse Agonism , Nuclear Receptor Subfamily 1, Group F, Member 3/agonists , Animals , Catalytic Domain , Disease Models, Animal , Female , Inflammation/metabolism , Models, Molecular , Rats
10.
Bioorg Med Chem Lett ; 27(4): 781-786, 2017 02 15.
Article in English | MEDLINE | ID: mdl-28131714
11.
Front Immunol ; 8: 1824, 2017.
Article in English | MEDLINE | ID: mdl-29375547

ABSTRACT

Heterozygous mutations in the cytotoxic T lymphocyte antigen-4 (CTLA-4) are associated with lymphadenopathy, autoimmunity, immune dysregulation, and hypogammaglobulinemia in about 70% of the carriers. So far, the incomplete penetrance of CTLA-4 haploinsufficiency has been attributed to unknown genetic modifiers, epigenetic changes, or environmental effects. We sought to identify potential genetic modifiers in a family with differential clinical penetrance of CTLA-4 haploinsufficiency. Here, we report on a rare heterozygous gain-of-function mutation in Janus kinase-3 (JAK3) (p.R840C), which is associated with the clinical manifestation of CTLA-4 haploinsufficiency in a patient carrying a novel loss-of-function mutation in CTLA-4 (p.Y139C). While the asymptomatic parents carry either the CTLA-4 mutation or the JAK3 variant, their son has inherited both heterozygous mutations and suffers from hypogammaglobulinemia combined with autoimmunity and lymphoid hyperplasia. Although the patient's lymph node and spleen contained many hyperplastic germinal centers with follicular helper T (TFH) cells and immunoglobulin (Ig) G-positive B cells, plasma cell, and memory B cell development was impaired. CXCR5+PD-1+TIGIT+ TFH cells contributed to a large part of circulating T cells, but they produced only very low amounts of interleukin (IL)-4, IL-10, and IL-21 required for the development of memory B cells and plasma cells. We, therefore, suggest that the combination of the loss-of-function mutation in CTLA-4 with the gain-of-function mutation in JAK3 directs the differentiation of CD4 T cells into dysfunctional TFH cells supporting the development of lymphadenopathy, hypogammaglobulinemia, and immunodeficiency. Thus, the combination of rare genetic heterozygous variants that remain clinically unnoticed individually may lead to T cell hyperactivity, impaired memory B cell, and plasma cell development resulting finally in combined immunodeficiency.

12.
Bioorg Med Chem Lett ; 25(20): 4642-7, 2015 Oct 15.
Article in English | MEDLINE | ID: mdl-26320624

ABSTRACT

Design and optimization of benzo- and pyrido-thiazoles/isothiazoles are reported leading to the discovery of the potent, orally bioavailable Syk inhibitor 5, which was found to be active in a rat PK/PD model. Compound 5 showed acceptable overall kinase selectivity. However, in addition to Syk it also inhibited Aurora kinase in enzymatic and cellular settings leading to findings in the micronucleus assay. As a consequence, compound 5 was not further pursued.


Subject(s)
Disease Models, Animal , Intracellular Signaling Peptides and Proteins/antagonists & inhibitors , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/pharmacology , Protein-Tyrosine Kinases/antagonists & inhibitors , Thiazoles/pharmacology , Administration, Oral , Animals , Biological Availability , Dose-Response Relationship, Drug , Intracellular Signaling Peptides and Proteins/metabolism , Microsomes, Liver/drug effects , Microsomes, Liver/metabolism , Models, Molecular , Molecular Structure , Protein Kinase Inhibitors/chemistry , Protein-Tyrosine Kinases/metabolism , Rats , Rats, Inbred Lew , Rats, Sprague-Dawley , Structure-Activity Relationship , Syk Kinase , Thiazoles/administration & dosage , Thiazoles/chemistry
13.
Cancer Cell ; 28(1): 29-41, 2015 Jul 13.
Article in English | MEDLINE | ID: mdl-26175414

ABSTRACT

A variety of cancers depend on JAK2 signaling, including the high-risk subset of B cell acute lymphoblastic leukemias (B-ALLs) with CRLF2 rearrangements. Type I JAK2 inhibitors induce paradoxical JAK2 hyperphosphorylation in these leukemias and have limited activity. To improve the efficacy of JAK2 inhibition in B-ALL, we developed the type II inhibitor CHZ868, which stabilizes JAK2 in an inactive conformation. CHZ868 potently suppressed the growth of CRLF2-rearranged human B-ALL cells, abrogated JAK2 signaling, and improved survival in mice with human or murine B-ALL. CHZ868 and dexamethasone synergistically induced apoptosis in JAK2-dependent B-ALLs and further improved in vivo survival compared to CHZ868 alone. These data support the testing of type II JAK2 inhibition in patients with JAK2-dependent leukemias and other disorders.


Subject(s)
Aminopyridines/administration & dosage , Antineoplastic Agents/administration & dosage , Benzimidazoles/administration & dosage , Dexamethasone/administration & dosage , Drug Resistance, Neoplasm/drug effects , Janus Kinase 2/antagonists & inhibitors , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Protein Kinase Inhibitors/administration & dosage , Aminopyridines/pharmacology , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Apoptosis , Benzimidazoles/pharmacology , Cell Line, Tumor , Cytoprotection/drug effects , Drug Synergism , Humans , Janus Kinase 2/chemistry , Janus Kinase 2/genetics , Mice , Mutation , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Protein Kinase Inhibitors/pharmacology , Signal Transduction/drug effects , Xenograft Model Antitumor Assays
14.
J Med Chem ; 58(4): 1950-63, 2015 Feb 26.
Article in English | MEDLINE | ID: mdl-25633741

ABSTRACT

We describe the discovery of selective and potent Syk inhibitor 11, which exhibited favorable PK profiles in rat and dog and was found to be active in a collagen-induced arthritis model in rats. Compound 11 was selected for further profiling, but, unfortunately, in GLP toxicological studies it showed liver findings in rat and dog. Nevertheless, 11 could become a valuable tool compound to investigate the rich biology of Syk in vitro and in vivo.


Subject(s)
Arthritis, Experimental/drug therapy , Drug Discovery , Intracellular Signaling Peptides and Proteins/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Protein-Tyrosine Kinases/antagonists & inhibitors , Animals , Arthritis, Experimental/chemically induced , Collagen , Disease Models, Animal , Dogs , Dose-Response Relationship, Drug , Female , Humans , Intracellular Signaling Peptides and Proteins/blood , Intracellular Signaling Peptides and Proteins/metabolism , Liver/drug effects , Mice , Mice, Inbred C57BL , Models, Molecular , Molecular Conformation , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/adverse effects , Protein Kinase Inhibitors/chemistry , Protein-Tyrosine Kinases/blood , Protein-Tyrosine Kinases/metabolism , Rats , Rats, Inbred Lew , Structure-Activity Relationship , Syk Kinase
15.
Bioorg Med Chem Lett ; 24(20): 4812-7, 2014 Oct 15.
Article in English | MEDLINE | ID: mdl-25248678

ABSTRACT

A novel class of selective inhibitors of ROCK1 and ROCK2 has been identified by structural based drug design. PK/PD experiments using a set of highly selective Rho kinase inhibitors suggest that systemic Rho kinase inhibition is linked to a reversible reduction in lymphocyte counts. These results led to the consideration of topical delivery of these molecules, and to the identification of a lead molecule 7 which shows promising PK and PD in a murine model of pulmonary hypertension after intra-tracheal dosing.


Subject(s)
Hypertension, Pulmonary/drug therapy , Protein Kinase Inhibitors/pharmacology , rho-Associated Kinases/antagonists & inhibitors , Animals , Crystallography, X-Ray , Disease Models, Animal , Dose-Response Relationship, Drug , Humans , Hypertension, Pulmonary/enzymology , Hypertension, Pulmonary/metabolism , Mice , Mice, Inbred BALB C , Models, Molecular , Molecular Structure , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/chemistry , Rats , Rats, Inbred Lew , Structure-Activity Relationship , rho-Associated Kinases/metabolism
16.
Bioorg Med Chem Lett ; 24(10): 2278-82, 2014 May 15.
Article in English | MEDLINE | ID: mdl-24726806

ABSTRACT

We describe two series of Syk inhibitors which potently abrogate Syk kinase function in enzymatic assays, cellular assays and in primary cells in the presence of blood. Introduction of a 7-aminoindole substituent led to derivatives with good kinase selectivity and little or no hERG channel inhibition (3b, 10c).


Subject(s)
Intracellular Signaling Peptides and Proteins/antagonists & inhibitors , Intracellular Signaling Peptides and Proteins/blood , Protein Kinase Inhibitors/blood , Protein Kinase Inhibitors/pharmacology , Protein-Tyrosine Kinases/antagonists & inhibitors , Protein-Tyrosine Kinases/blood , Humans , Indoles/blood , Indoles/chemistry , Indoles/pharmacology , Protein Kinase Inhibitors/chemistry , Syk Kinase
17.
J Med Chem ; 56(6): 2196-206, 2013 Mar 28.
Article in English | MEDLINE | ID: mdl-23360239

ABSTRACT

A small library of fragments comprising putative recognition motifs for the catalytic dyad of aspartic proteases was generated by in silico similarity searches within the corporate compound deck based on rh-renin active site docking and scoring filters. Subsequent screening by NMR identified the low-affinity hits 3 and 4 as competitive active site binders, which could be shown by X-ray crystallography to bind to the hydrophobic S3-S1 pocket of rh-renin. As part of a parallel multiple hit-finding approach, the 3,5-disubstituted piperidine (rac)-5 was discovered by HTS using a enzymatic assay. X-ray crystallography demonstrated the eutomer (3S,5R)-5 to be a peptidomimetic inhibitor binding to a nonsubstrate topography of the rh-renin prime site. The design of the potent and selective (3S,5R)-12 bearing a P3(sp)-tethered tricyclic P3-P1 pharmacophore derived from 3 is described. (3S,5R)-12 showed oral bioavailability in rats and demonstrated blood pressure lowering activity in the double-transgenic rat model.


Subject(s)
Drug Design , Piperidines/chemistry , Piperidines/pharmacology , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacology , Renin/antagonists & inhibitors , Administration, Oral , Animals , Biological Availability , Inhibitory Concentration 50 , Models, Molecular , Piperidines/administration & dosage , Piperidines/pharmacokinetics , Protease Inhibitors/administration & dosage , Protease Inhibitors/pharmacokinetics , Protein Conformation , Rats , Renin/chemistry
18.
Cancer Discov ; 2(6): 512-523, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22684457

ABSTRACT

Janus kinase (JAK) inhibitors are being developed for the treatment of rheumatoid arthritis, psoriasis, myeloproliferative neoplasms, and leukemias. Most of these drugs target the ATP-binding pocket and stabilize the active conformation of the JAK kinases. This type I binding mode can lead to an increase in JAK activation loop phosphorylation, despite blockade of kinase function. Here we report that stabilizing the inactive state via type II inhibition acts in the opposite manner, leading to a loss of activation loop phosphorylation. We used X-ray crystallography to corroborate the binding mode and report for the first time the crystal structure of the JAK2 kinase domain in an inactive conformation. Importantly, JAK inhibitor-induced activation loop phosphorylation requires receptor interaction, as well as intact kinase and pseudokinase domains. Hence, depending on the respective conformation stabilized by a JAK inhibitor, hyperphosphorylation of the activation loop may or may not be elicited.


Subject(s)
Janus Kinases/antagonists & inhibitors , Janus Kinases/chemistry , Protein Kinase Inhibitors/pharmacology , Animals , Binding Sites , Cell Line, Tumor , Humans , Janus Kinase 2/antagonists & inhibitors , Janus Kinase 2/chemistry , Mice , Phosphorylation/drug effects , Protein Binding , Protein Structure, Tertiary , STAT5 Transcription Factor/metabolism
19.
J Exp Med ; 209(2): 259-73, 2012 Feb 13.
Article in English | MEDLINE | ID: mdl-22271575

ABSTRACT

Enzymatic inhibitors of Janus kinase 2 (JAK2) are in clinical development for the treatment of myeloproliferative neoplasms (MPNs), B cell acute lymphoblastic leukemia (B-ALL) with rearrangements of the cytokine receptor subunit cytokine receptor-like factor 2 (CRLF2), and other tumors with constitutive JAK2 signaling. In this study, we identify G935R, Y931C, and E864K mutations within the JAK2 kinase domain that confer resistance across a panel of JAK inhibitors, whether present in cis with JAK2 V617F (observed in MPNs) or JAK2 R683G (observed in B-ALL). G935R, Y931C, and E864K do not reduce the sensitivity of JAK2-dependent cells to inhibitors of heat shock protein 90 (HSP90), which promote the degradation of both wild-type and mutant JAK2. HSP90 inhibitors were 100-1,000-fold more potent against CRLF2-rearranged B-ALL cells, which correlated with JAK2 degradation and more extensive blockade of JAK2/STAT5, MAP kinase, and AKT signaling. In addition, the HSP90 inhibitor AUY922 prolonged survival of mice xenografted with primary human CRLF2-rearranged B-ALL further than an enzymatic JAK2 inhibitor. Thus, HSP90 is a promising therapeutic target in JAK2-driven cancers, including those with genetic resistance to JAK enzymatic inhibitors.


Subject(s)
HSP90 Heat-Shock Proteins/antagonists & inhibitors , Isoxazoles/pharmacology , Janus Kinase 2/antagonists & inhibitors , Janus Kinase 2/genetics , Leukemia, B-Cell/enzymology , Myeloproliferative Disorders/enzymology , Resorcinols/pharmacology , Signal Transduction/physiology , Animals , Cell Line, Tumor , Cell Proliferation , DNA Primers/genetics , Female , Flow Cytometry , Gene Expression Profiling , HSP90 Heat-Shock Proteins/metabolism , Humans , Immunoblotting , Immunohistochemistry , Isoxazoles/therapeutic use , Janus Kinase 2/metabolism , Leukemia, B-Cell/drug therapy , Leukemia, B-Cell/genetics , Luciferases , Mice , Mice, Inbred BALB C , Mutagenesis , Mutation, Missense/genetics , Myeloproliferative Disorders/drug therapy , Myeloproliferative Disorders/genetics , Phosphorylation , RNA, Small Interfering/genetics , Receptors, Cytokine/genetics , Receptors, Cytokine/metabolism , Resorcinols/therapeutic use , X-Ray Microtomography
20.
Bioorg Med Chem Lett ; 21(24): 7367-72, 2011 Dec 15.
Article in English | MEDLINE | ID: mdl-22078216

ABSTRACT

The present study describes a novel series of ATP-competitive PKC inhibitors based on the 2,6-naphthyridine template. Example compounds potently inhibit the novel Protein Kinase C (PKC) isotypes δ, ε, η, θ (in particular PKCε/η, and display a 10-100-fold selectivity over the classical PKC isotypes. The prototype compound 11 was found to inhibit PKCθ-dependent pathways in vitro and in vivo. In vitro, a-CD3/a-CD28-induced lymphocyte proliferation could be effectively blocked in 10% rat whole blood. In mice, 11 dose-dependently inhibited Staphylococcus aureus enterotoxin B-triggered IL-2 serum levels after oral dosing.


Subject(s)
Naphthyridines/chemistry , Protein Kinase C/antagonists & inhibitors , Protein Kinase Inhibitors/chemistry , Administration, Oral , Animals , Binding Sites , Computer Simulation , Crystallography, X-Ray , Enterotoxins/toxicity , Interleukin-2/blood , Isoenzymes/antagonists & inhibitors , Isoenzymes/metabolism , Mice , Naphthyridines/chemical synthesis , Naphthyridines/pharmacokinetics , Protein Kinase C/metabolism , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/pharmacokinetics , Protein Structure, Tertiary , Rats , T-Lymphocytes/cytology , T-Lymphocytes/drug effects , T-Lymphocytes/immunology
SELECTION OF CITATIONS
SEARCH DETAIL