Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nano Lett ; 17(2): 1212-1218, 2017 02 08.
Article in English | MEDLINE | ID: mdl-28081598

ABSTRACT

To date, semiconductor light emitting diodes (LEDs) operating in the deep ultraviolet (UV) spectral range exhibit very low efficiency due to the presence of large densities of defects and extremely inefficient p-type conduction of conventional AlGaN quantum well heterostructures. We have demonstrated that such critical issues can be potentially addressed by using nearly defect-free AlGaN tunnel junction core-shell nanowire heterostructures. The core-shell nanowire arrays exhibit high photoluminescence efficiency (∼80%) in the UV-C band at room temperature. With the incorporation of an epitaxial Al tunnel junction, the p-(Al)GaN contact-free nanowire deep UV LEDs showed nearly one order of magnitude reduction in the device resistance, compared to the conventional nanowire p-i-n device. The unpackaged Al tunnel junction deep UV LEDs exhibit an output power >8 mW and a peak external quantum efficiency ∼0.4%, which are nearly one to two orders of magnitude higher than previously reported AlGaN nanowire devices. Detailed studies further suggest that the maximum achievable efficiency is limited by electron overflow and poor light extraction efficiency due to the TM polarized emission.

2.
Nano Lett ; 15(10): 6821-8, 2015 Oct 14.
Article in English | MEDLINE | ID: mdl-26360182

ABSTRACT

A dual-photoelectrode device, consisting of a photoanode and photocathode with complementary energy bandgaps, has long been perceived as an ideal scheme for achieving high efficiency, unassisted solar-driven water splitting. Previously reported 2-photon tandem devices, however, generally exhibit an extremely low efficiency (<0.1%), which has been largely limited by the incompatibility between the two photoelectrode materials. Here we show that the use of metal-nitride nanowire photoelectrodes, together with the scheme of parallel illumination by splitting the solar spectrum spatially and spectrally, can break the efficiency bottleneck of conventional 2-photon tandem devices. We have first investigated a dual-photoelectrode device consisting of a GaN nanowire photoanode and an InGaN nanowire photocathode, which exhibited an open circuit potential of 1.3 V and nearly 20-fold enhancement in the power conversion efficiency under visible light illumination (400-600 nm), compared to the individual photoelectrodes in 1 mol/L HBr. We have further demonstrated a dual-photoelectrode device consisting of parallel-connected metal-nitride nanowire photoanodes and a Si/InGaN nanowire photocathode, which can perform unassisted, direct solar-to-hydrogen conversion. A power conversion efficiency of 2% was measured under AM1.5G 1 sun illumination.

SELECTION OF CITATIONS
SEARCH DETAIL