Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
IUBMB Life ; 2024 May 15.
Article in English | MEDLINE | ID: mdl-38748402

ABSTRACT

Helicobacter pylori encodes homologues of PilM, PilN and PilO from bacteria with Type IV pili, where these proteins form a pilus alignment complex. Inactivation of pilO changes H. pylori motility in semi-solid media, suggesting a link to the chemosensory pathways or flagellar motor. Here, we showed that mutation of the pilO or pilN gene in H. pylori strain SS1 reduced the mean linear swimming speed in liquid media, implicating PilO and PilN in the function, or regulation of, the flagellar motor. We also demonstrated that the soluble variants of H. pylori PilN and PilO share common biochemical properties with their Type IV pili counterparts which suggests their adapted function in the bacterial flagellar motor may be similar to that in the Type IV pili.

2.
J Agric Food Chem ; 72(12): 6389-6401, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38494644

ABSTRACT

Prolonged inflammation leads to the genesis of various inflammatory diseases such as atherosclerosis, cancer, inflammatory bowel disease, Alzheimer's, etc. The uncontrolled inflammatory response is characterized by the excessive release of pro-inflammatory mediators such as nitric oxide (NO), tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), interleukin-1alpha (IL-1α), and inflammatory enzymes such as cyclooxygenase-2 (COX-2). Hence, the downregulation of these inflammatory mediators is an active therapy to control aberrant inflammation and tissue damage. To address this, herein, we present the rational design and synthesis of novel phytochemical entities (NPCEs) through strategic linker-based molecular hybridization of aromatic/heteroaromatic fragments with the labdane dialdehyde, isolated from the medicinally and nutritionally significant rhizomes of the plant Curcuma amada. To validate the anti-inflammatory potential, we employed a comprehensive in vitro study assessing its inhibitory effect on the COX-2 enzyme and other inflammatory mediators, viz., NO, TNF-α, IL-6, and IL-1α, in bacterial lipopolysaccharide-stimulated macrophages, as well as in-silico molecular modeling studies targeting the inflammation regulator COX-2 enzyme. Among the synthesized novel compounds, 5f exhibited the highest anti-inflammatory potential by inhibiting the COX-2 enzyme (IC50 = 17.67 ± 0.89 µM), with a 4-fold increased activity relative to the standard drug indomethacin (IC50 = 67.16 ± 0.17 µM). 5f also significantly reduced the levels of LPS-induced NO, TNF-α, IL-6, and IL-1α, much better than the positive control. Molecular mechanistic studies revealed that 5f suppressed the expression of COX-2 and pro-inflammatory cytokine release dose-dependently, which was associated with the inhibition of the NF-κB signaling pathway. This infers that the labdane derivative 5f is a promising lead candidate as an anti-inflammatory agent to further explore its therapeutic landscape.


Subject(s)
Interleukin-6 , Tumor Necrosis Factor-alpha , Humans , Interleukin-6/metabolism , Tumor Necrosis Factor-alpha/metabolism , Cyclooxygenase 2/metabolism , NF-kappa B/metabolism , Anti-Inflammatory Agents/pharmacology , Inflammation/drug therapy , Inflammation Mediators/metabolism , Lipopolysaccharides/adverse effects , Nitric Oxide/metabolism
3.
J Phys Chem Lett ; 15(4): 919-924, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38241259

ABSTRACT

The ongoing coronavirus disease 2019 (COVID-19) pandemic caused by the SARS-CoV-2 coronavirus and the perpetual rise of new variants warrant investigation of the molecular and structural details of the infection process and modulation of the host defense by viral proteins. This Letter reports the combined experimental and computational approaches to provide key insights into the structural and functional basis of Nsp1's association with different cyclophilins and FKBPs in regulating COVID-19 infection. We demonstrated the real-time stability and functional dynamics of the Nsp1-CypA/FKBP1A complex and investigated the repurposing of potential inhibitors that could block these interactions. Overall, we provided insights into the inhibitory role Nsp1 in downstream interferon production, a key aspect for host defense that prevents the SARS-CoV-2 or related family of corona virus infection.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/metabolism , Cyclophilins , Viral Nonstructural Proteins/metabolism , Interferons
4.
Nat Commun ; 14(1): 6947, 2023 11 07.
Article in English | MEDLINE | ID: mdl-37935654

ABSTRACT

Disease-causing mutations in genes encoding transcription factors (TFs) can affect TF interactions with their cognate DNA-binding motifs. Whether and how TF mutations impact upon the binding to TF composite elements (CE) and the interaction with other TFs is unclear. Here, we report a distinct mechanism of TF alteration in human lymphomas with perturbed B cell identity, in particular classic Hodgkin lymphoma. It is caused by a recurrent somatic missense mutation c.295 T > C (p.Cys99Arg; p.C99R) targeting the center of the DNA-binding domain of Interferon Regulatory Factor 4 (IRF4), a key TF in immune cells. IRF4-C99R fundamentally alters IRF4 DNA-binding, with loss-of-binding to canonical IRF motifs and neomorphic gain-of-binding to canonical and non-canonical IRF CEs. IRF4-C99R thoroughly modifies IRF4 function by blocking IRF4-dependent plasma cell induction, and up-regulates disease-specific genes in a non-canonical Activator Protein-1 (AP-1)-IRF-CE (AICE)-dependent manner. Our data explain how a single mutation causes a complex switch of TF specificity and gene regulation and open the perspective to specifically block the neomorphic DNA-binding activities of a mutant TF.


Subject(s)
Interferon Regulatory Factors , Lymphoma , Humans , B-Lymphocytes/metabolism , DNA , Gene Expression Regulation , Interferon Regulatory Factors/genetics , Interferon Regulatory Factors/metabolism , Lymphoma/genetics
5.
RSC Adv ; 13(42): 29401-29407, 2023 Oct 04.
Article in English | MEDLINE | ID: mdl-37818265

ABSTRACT

Small tripeptides composed entirely of ß3-amino acids have been shown to self-assemble into fibres following acylation of the N-terminus. Given the use of Fmoc as a strategy to initiate self-assembly in α-peptides, we hypothesized that the acyl cap can be replaced by an Fmoc without perturbation to the self-assembly and enable simpler synthetic protocols. We therefore replaced the N-acyl cap for an Fmoc group and herein we show that these Fmoc-protected ß3-peptides produce regular spherical particles, rather than fibrous structures, that are stable and capable of encapsulating cargo. We then demonstrated that these particles were able to deliver cargo to cells without any obvious signs of cytotoxicity. This is the first description of such regular nanoparticles derived from Fmoc-protected ß3-peptides.

6.
iScience ; 26(7): 107210, 2023 Jul 21.
Article in English | MEDLINE | ID: mdl-37485371

ABSTRACT

Coxiella burnetii is an obligate zoonotic bacterium that targets macrophages causing a disease called Q fever. It has a biphasic developmental life cycle where the extracellular and metabolically inactive small cell variant (SCV) transforms inside the host into the vegetative large cell variant (LCV). However, details about the morphological and structural changes of this transition are still lacking. Here, we used cryo-electron tomography to image both SCV and LCV variants grown either under axenic conditions or purified directly from host cells. We show that SCVs are characterized by equidistant stacks of inner membrane that presumably facilitate the transition to LCV, a transition coupled with the expression of the Dot/Icm type IVB secretion system (T4BSS). A class of T4BSS particles were associated with extracellular densities possibly involved in host infection. Also, SCVs contained spherical multilayered membrane structures of different sizes and locations suggesting no connection to sporulation as once assumed.

7.
Front Mol Biosci ; 9: 960806, 2022.
Article in English | MEDLINE | ID: mdl-35911965

ABSTRACT

Stress granules are non-membrane bound RNA-protein granules essential for survival during acute cellular stress. TIA-1 is a key protein in the formation of stress granules that undergoes liquid-liquid phase separation by association with specific RNAs and protein-protein interactions. However, the fundamental properties of the TIA-1 protein that enable phase-separation also render TIA-1 susceptible to the formation of irreversible fibrillar aggregates. Despite this, within physiological stress granules, TIA-1 is not present as fibrils, pointing to additional factors within the cell that prevent TIA-1 aggregation. Here we show that heterotypic interactions with stress granule co-factors Zn2+ and RGG-rich regions from FUS each act together with nucleic acid to induce the liquid-liquid phase separation of TIA-1. In contrast, these co-factors do not enhance nucleic acid induced fibril formation of TIA-1, but rather robustly inhibit the process. NMR titration experiments revealed specific interactions between Zn2+ and H94 and H96 in RRM2 of TIA-1. Strikingly, this interaction promotes multimerization of TIA-1 independently of the prion-like domain. Thus, through different molecular mechanisms, these stress granule co-factors promote TIA-1 liquid-liquid phase separation and suppress fibrillar aggregates, potentially contributing to the dynamic nature of stress granules and the cellular protection that they provide.

8.
J Phys Chem Lett ; : 5324-5333, 2022 Jun 08.
Article in English | MEDLINE | ID: mdl-35675654

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has infected more than 520 million people around the globe resulting in more than 6.2 million as of May 2022. Understanding the cell entry mechanism of SARS-CoV-2 and its entire repertoire is a high priority for developing improved therapeutics. The SARS-CoV-2 spike glycoprotein (S-protein) engages with host receptor ACE2 for adhesion and serine proteases furin and TMPRSS2 for proteolytic activation and subsequent entry. Recent studies have highlighted the molecular details of furin and S-protein interaction. However, the structural and molecular interplay between TMPRSS2 and S-protein remains enigmatic. Here, using biochemical, structural, computational, and molecular dynamics approaches, we investigated how TMPRSS2 recognizes and activates the S-protein to facilitate viral entry. First, we identified three potential TMPRSS2 cleavage sites in the S2 domain of S-protein (S2', T1, and T2) and reported the structure of TMPRSS2 with its individual catalytic triad. By employing computational modeling and structural analyses, we modeled the macromolecular structure of TMPRSS2 in complex with S-protein, which incited the mechanism of S-protein processing or cleavage for a new path of viral entry. On the basis of structure-guided drug screening, we also report the potential TMPRSS2 inhibitors and their structural interaction in blocking TMPRSS2 activity, which could impede the interaction with the spike protein. These findings reveal the role of TMPRSS2 in the activation of SARS-CoV-2 for its entry and insight into possible intervention strategies.

9.
Biochem Soc Trans ; 50(1): 95-105, 2022 02 28.
Article in English | MEDLINE | ID: mdl-35076655

ABSTRACT

Viruses can be enveloped or non-enveloped, and require a host cell to replicate and package their genomes into new virions to infect new cells. To accomplish this task, viruses hijack the host-cell machinery to facilitate their replication by subverting and manipulating normal host cell function. Enveloped viruses can have severe consequences for human health, causing various diseases such as acquired immunodeficiency syndrome (AIDS), seasonal influenza, COVID-19, and Ebola virus disease. The complex arrangement and pleomorphic architecture of many enveloped viruses pose a challenge for the more widely used structural biology techniques, such as X-ray crystallography. Cryo-electron tomography (cryo-ET), however, is a particularly well-suited tool for overcoming the limitations associated with visualizing the irregular shapes and morphology enveloped viruses possess at macromolecular resolution. The purpose of this review is to explore the latest structural insights that cryo-ET has revealed about enveloped viruses, with particular attention given to their architectures, mechanisms of entry, replication, assembly, maturation and egress during infection. Cryo-ET is unique in its ability to visualize cellular landscapes at 3-5 nanometer resolution. Therefore, it is the most suited technique to study asymmetric elements and structural rearrangements of enveloped viruses during infection in their native cellular context.


Subject(s)
Viruses/ultrastructure , Cryoelectron Microscopy , Ebolavirus/metabolism , Ebolavirus/ultrastructure , Electron Microscope Tomography , HIV-1/metabolism , HIV-1/ultrastructure , Herpesvirus 1, Human/metabolism , Herpesvirus 1, Human/ultrastructure , Humans , SARS-CoV-2/metabolism , SARS-CoV-2/ultrastructure , Viruses/metabolism
10.
J Phys Chem Lett ; 11(22): 9659-9668, 2020 Nov 19.
Article in English | MEDLINE | ID: mdl-33135884

ABSTRACT

SARS-CoV-2 is the cause of the ongoing Coronavirus disease 19 (COVID-19) pandemic around the world causing pneumonia and lower respiratory tract infections. In understanding the SARS-CoV-2 pathogenicity and mechanism of action, it is essential to depict the full repertoire of expressed viral proteins. The recent biological studies have highlighted the leader protein Nsp1 of SARS-CoV-2 importance in shutting down the host protein production. Besides, it still enigmatic how Nsp1 regulates for translation. Here we report the novel structure of Nsp1 from SARS-CoV-2 in complex with the SL1 region of 5'UTR of SARS-CoV-2, and its factual interaction is corroborated with enzyme kinetics and experimental binding affinity studies. The studies also address how leader protein Nsp1 of SARS-CoV-2 recognizes its self RNA toward translational regulation by further recruitment of the 40S ribosome. With the aid of molecular dynamics and simulations, we also demonstrated the real-time stability and functional dynamics of the Nsp1/SL1 complex. The studies also report the potential inhibitors and their mode of action to block viral protein/RNA complex formation. This enhance our understanding of the mechanism of the first viral protein Nsp1 synthesized in the human cell to regulate the translation of self and host. Understanding the structure and mechanism of SARS-CoV-2 Nsp1 and its interplay with the viral RNA and ribosome will open the arena for exploring the development of live attenuated vaccines and effective therapeutic targets for this disease.


Subject(s)
5' Untranslated Regions , RNA, Viral/metabolism , SARS-CoV-2/chemistry , Viral Nonstructural Proteins/metabolism , COVID-19 Vaccines , Depsides/chemistry , Depsides/metabolism , Glycyrrhizic Acid/chemistry , Glycyrrhizic Acid/metabolism , Lactones/chemistry , Lactones/metabolism , Molecular Dynamics Simulation , Pregnatrienes/chemistry , Pregnatrienes/metabolism , Protein Binding/drug effects , RNA, Viral/chemistry , Ribosome Subunits, Small, Eukaryotic/chemistry , Ribosome Subunits, Small, Eukaryotic/metabolism , SARS-CoV-2/pathogenicity , Salicylates/chemistry , Salicylates/metabolism , Viral Nonstructural Proteins/chemistry , Virulence
11.
J Phys Chem Lett ; 11(16): 6655-6663, 2020 Aug 20.
Article in English | MEDLINE | ID: mdl-32787225

ABSTRACT

The COVID-19 pandemic is an urgent global health emergency, and the presence of Furin site in the SARS-CoV-2 spike glycoprotein alters virulence and warrants further molecular, structural, and biophysical studies. Here we report the structure of Furin in complex with SARS-CoV-2 spike glycoprotein, demonstrating how Furin binds to the S1/S2 region of spike glycoprotein and eventually cleaves the viral protein using experimental functional studies, molecular dynamics, and docking. The structural studies underline the mechanism and mode of action of Furin, which is a key process in host cell entry and a hallmark of enhanced virulence. Our whole-exome sequencing analysis shows the genetic variants/alleles in Furin were found to alter the binding affinity for viral spike glycoprotein and could vary in infectivity in humans. Unravelling the mechanisms of Furin action, binding dynamics, and the genetic variants opens the growing arena of bona fide antibodies and development of potential therapeutics targeting the blockage of Furin cleavage.


Subject(s)
Betacoronavirus/chemistry , Furin/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Virulence/physiology , Amino Acid Sequence , Animals , Betacoronavirus/pathogenicity , CHO Cells , Catalytic Domain , Cricetulus , Furin/chemistry , Furin/genetics , Gene Expression/physiology , Hexosamines/metabolism , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Protein Binding , Proteolysis , SARS-CoV-2 , Serine Proteinase Inhibitors/metabolism , Spike Glycoprotein, Coronavirus/chemistry
12.
Protein Expr Purif ; 176: 105722, 2020 12.
Article in English | MEDLINE | ID: mdl-32768454

ABSTRACT

Heat Shock Factor 1 (HSF1) is the master regulator of the heat shock response, a universal survival mechanism throughout eukaryotic species used to buffer potentially lethal proteotoxic conditions. HSF1's function in vivo is regulated by several factors, including post translational modifications and elevated temperatures, whereupon it forms trimers to bind with heat shock elements in DNA. Unsurprisingly, HSF1 is also extremely sensitive to elevated temperatures in vitro, which poses specific technical challenges when producing HSF1 using a recombinant expression system. Although there are several useful publications which outline steps taken for HSF1 expression and purification, studies that describe specific strategies and detailed protocols to overcome HSF1 trimerisation and degradation are currently lacking. Herein, we have reported our detailed experimental protocol for the expression and purification of monomeric human HSF1 (HsHSF1) as a major species. We also propose a refined method of inducing HsHSF1 activation in vitro, that we consider more accurately mimics HsHSF1 activation in vivo and is therefore more physiologically relevant.


Subject(s)
Gene Expression , Heat Shock Transcription Factors , Heat Shock Transcription Factors/biosynthesis , Heat Shock Transcription Factors/chemistry , Heat Shock Transcription Factors/genetics , Heat Shock Transcription Factors/isolation & purification , Humans , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification
13.
Nucleic Acids Res ; 48(14): 8006-8021, 2020 08 20.
Article in English | MEDLINE | ID: mdl-32556302

ABSTRACT

The poliovirus type I IRES is able to recruit ribosomal machinery only in the presence of host factor PCBP2 that binds to stem-loop IV of the IRES. When PCBP2 is cleaved in its linker region by viral proteinase 3CD, translation initiation ceases allowing the next stage of replication to commence. Here, we investigate the interaction of PCBP2 with the apical region of stem-loop IV (SLIVm) of poliovirus RNA in its full-length and truncated form. CryoEM structure reconstruction of the full-length PCBP2 in complex with SLIVm solved to 6.1 Å resolution reveals a compact globular complex of PCBP2 interacting with the cruciform RNA via KH domains and featuring a prominent GNRA tetraloop. SEC-SAXS, SHAPE and hydroxyl-radical cleavage establish that PCBP2 stabilizes the SLIVm structure, but upon cleavage in the linker domain the complex becomes more flexible and base accessible. Limited proteolysis and REMSA demonstrate the accessibility of the linker region in the PCBP2/SLIVm complex and consequent loss of affinity of PCBP2 for the SLIVm upon cleavage. Together this study sheds light on the structural features of the PCBP2/SLIV complex vital for ribosomal docking, and the way in which this key functional interaction is regulated following translation of the poliovirus genome.


Subject(s)
Peptide Chain Initiation, Translational , Poliovirus/genetics , RNA, Viral/chemistry , RNA-Binding Proteins/chemistry , Cryoelectron Microscopy , Models, Molecular , Nucleic Acid Conformation , Protein Conformation , RNA, Viral/metabolism , RNA-Binding Proteins/metabolism , Scattering, Small Angle , X-Ray Diffraction
14.
Int J Antimicrob Agents ; 56(2): 105998, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32360231

ABSTRACT

The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) pandemic is a global public health emergency, and new therapeutics are needed. This article reports the potential drug target and mechanism of action of Arbidol (umifenovir) to treat coronavirus disease 2019 (COVID-19). Molecular dynamics and structural analysis were used to show how Arbidol targets the SARS-CoV-2 spike glycoprotein and impedes its trimerization, which is key for host cell adhesion and hijacking, indicating the potential of Arbidol to treat COVID-19. It is hoped that knowledge of the potential drug target and mechanism of action of Arbidol will help in the development of new therapeutics for SARS-CoV-2.


Subject(s)
Antiviral Agents/pharmacology , Betacoronavirus/drug effects , Biopolymers/chemistry , Coronavirus Infections/drug therapy , Indoles/pharmacology , Pneumonia, Viral/drug therapy , Spike Glycoprotein, Coronavirus/antagonists & inhibitors , Antiviral Agents/therapeutic use , Betacoronavirus/isolation & purification , COVID-19 , Coronavirus Infections/virology , Humans , Indoles/chemistry , Pandemics , Pneumonia, Viral/virology , SARS-CoV-2
15.
Gene ; 752: 144792, 2020 Aug 20.
Article in English | MEDLINE | ID: mdl-32445924

ABSTRACT

The morbidity of SARS-CoV-2 (COVID-19) is reaching 3 Million landmark causing and a serious public health concern globally and it is enigmatic how several antiviral and antibody treatments were not effective in the different period across the globe. With the drastic increasing number of positive cases around the world WHO raised the importance in the assessment of the risk of spread and understanding genetic modifications that could have occurred in the SARS-CoV-2. Using all available deep sequencing data of complete genome from all over the world (NCBI repository), we identified several hundreds of point mutations or SNPs in SARS-CoV-2 all across the genome. This could be the cause for the constant change and differed virulence with an increase in mortality and morbidity. Among the 12 different countries (one sequence from each country) with complete genome sequencing data, we noted the 47 key point mutations or SNPs located along the entire genome that might have impact in the virulence and response to different antivirals against SARS-CoV-2. In this regard, key viral proteins of spike glycoprotein, Nsp1, RdRp and the ORF8 region got heavily mutated within these 3 months via person-to-person passage. We also discuss what could be the possible cause of this rapid mutation in the SARS-CoV-2.


Subject(s)
Betacoronavirus/genetics , Point Mutation , Polymorphism, Single Nucleotide , Americas/epidemiology , Asia/epidemiology , COVID-19 , Coronavirus Infections/epidemiology , Coronavirus Infections/virology , Drug Resistance, Viral , Europe/epidemiology , Genome, Viral , Humans , Pandemics , Phylogeny , Pneumonia, Viral/epidemiology , Pneumonia, Viral/virology , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/genetics , Viral Proteins/classification , Viral Proteins/genetics
16.
Emerg Microbes Infect ; 9(1): 601-604, 2020.
Article in English | MEDLINE | ID: mdl-32178593

ABSTRACT

The recent outbreak of pneumonia-causing COVID-19 in China is an urgent global public health issue with an increase in mortality and morbidity. Here we report our modelled homo-trimer structure of COVID-19 spike glycoprotein in both closed (ligand-free) and open (ligand-bound) conformation, which is involved in host cell adhesion. We also predict the unique N- and O-linked glycosylation sites of spike glycoprotein that distinguish it from the SARS and underlines shielding and camouflage of COVID-19 from the host the defence system. Furthermore, our study also highlights the key finding that the S1 domain of COVID-19 spike glycoprotein potentially interacts with the human CD26, a key immunoregulatory factor for hijacking and virulence. These findings accentuate the unique features of COVID-19 and assist in the development of new therapeutics.


Subject(s)
Betacoronavirus/metabolism , Dipeptidyl Peptidase 4/chemistry , Polysaccharides/chemistry , Spike Glycoprotein, Coronavirus/chemistry , Betacoronavirus/chemistry , Betacoronavirus/genetics , COVID-19 , Coronavirus Infections/virology , Dipeptidyl Peptidase 4/metabolism , Humans , Models, Molecular , Pandemics , Pneumonia, Viral/virology , Polysaccharides/metabolism , Protein Binding , Protein Structure, Quaternary , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism
17.
Rev Sci Instrum ; 89(10): 106103, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30399854

ABSTRACT

Applying grease to seal the well surface of the crystallization plate through traditional approaches in the hanging drop vapor diffusion method is a laborious process and known to cause air bubble formation. Here we report a simple design of adapters to the regular syringes for applying grease to the 24-well crystallization tray. This newly developed tool overcomes the difficulties faced with the traditional greasing methods, such as uneven distribution and excess of grease on the wells. The use of new adapters expedites the process of greasing by 4-5 times which is quick and reliable and can be cost effective in terms of time and labor. In addition, this tool reduces the time and effort required for greasing the wells. Here we demonstrate two types of adaptors (grid cork and septal cork), and the effectiveness of both the adaptors was further corroborated by crystallization trials.

SELECTION OF CITATIONS
SEARCH DETAIL
...