Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
Add more filters










Publication year range
1.
Nature ; 628(8009): 863-871, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38570687

ABSTRACT

Vertebrate organs require locally adapted blood vessels1,2. The gain of such organotypic vessel specializations is often deemed to be molecularly unrelated to the process of organ vascularization. Here, opposing this model, we reveal a molecular mechanism for brain-specific angiogenesis that operates under the control of Wnt7a/b ligands-well-known blood-brain barrier maturation signals3-5. The control mechanism relies on Wnt7a/b-dependent expression of Mmp25, which we find is enriched in brain endothelial cells. CRISPR-Cas9 mutagenesis in zebrafish reveals that this poorly characterized glycosylphosphatidylinositol-anchored matrix metalloproteinase is selectively required in endothelial tip cells to enable their initial migration across the pial basement membrane lining the brain surface. Mechanistically, Mmp25 confers brain invasive competence by cleaving meningeal fibroblast-derived collagen IV α5/6 chains within a short non-collagenous region of the central helical part of the heterotrimer. After genetic interference with the pial basement membrane composition, the Wnt-ß-catenin-dependent organotypic control of brain angiogenesis is lost, resulting in properly patterned, yet blood-brain-barrier-defective cerebrovasculatures. We reveal an organ-specific angiogenesis mechanism, shed light on tip cell mechanistic angiodiversity and thereby illustrate how organs, by imposing local constraints on angiogenic tip cells, can select vessels matching their distinctive physiological requirements.


Subject(s)
Brain , Neovascularization, Physiologic , Animals , Basement Membrane/metabolism , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/cytology , Brain/cytology , Brain/blood supply , Brain/metabolism , Cell Movement , Collagen Type IV/metabolism , CRISPR-Cas Systems/genetics , Endothelial Cells/metabolism , Endothelial Cells/cytology , Meninges/cytology , Meninges/blood supply , Meninges/metabolism , Organ Specificity , Wnt Proteins/metabolism , Wnt Signaling Pathway , Zebrafish/genetics , Zebrafish/metabolism , Zebrafish Proteins/metabolism , Zebrafish Proteins/genetics
2.
Circ Res ; 134(11): 1405-1423, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38639096

ABSTRACT

BACKGROUND: While our understanding of the single-cell gene expression patterns underlying the transformation of vascular cell types during the progression of atherosclerosis is rapidly improving, the clinical and pathophysiological relevance of these changes remains poorly understood. METHODS: Single-cell RNA sequencing data generated with SmartSeq2 (≈8000 genes/cell) in 16 588 single cells isolated during atherosclerosis progression in Ldlr-/-Apob100/100 mice with human-like plasma lipoproteins and from humans with asymptomatic and symptomatic carotid plaques was clustered into multiple subtypes. For clinical and pathophysiological context, the advanced-stage and symptomatic subtype clusters were integrated with 135 tissue-specific (atherosclerotic aortic wall, mammary artery, liver, skeletal muscle, and visceral and subcutaneous, fat) gene-regulatory networks (GRNs) inferred from 600 coronary artery disease patients in the STARNET (Stockholm-Tartu Atherosclerosis Reverse Network Engineering Task) study. RESULTS: Advanced stages of atherosclerosis progression and symptomatic carotid plaques were largely characterized by 3 smooth muscle cells (SMCs), and 3 macrophage subtype clusters with extracellular matrix organization/osteogenic (SMC), and M1-type proinflammatory/Trem2-high lipid-associated (macrophage) phenotypes. Integrative analysis of these 6 clusters with STARNET revealed significant enrichments of 3 arterial wall GRNs: GRN33 (macrophage), GRN39 (SMC), and GRN122 (macrophage) with major contributions to coronary artery disease heritability and strong associations with clinical scores of coronary atherosclerosis severity. The presence and pathophysiological relevance of GRN39 were verified in 5 independent RNAseq data sets obtained from the human coronary and aortic artery, and primary SMCs and by targeting its top-key drivers, FRZB and ALCAM in cultured human coronary artery SMCs. CONCLUSIONS: By identifying and integrating the most gene-rich single-cell subclusters of atherosclerosis to date with a coronary artery disease framework of GRNs, GRN39 was identified and independently validated as being critical for the transformation of contractile SMCs into an osteogenic phenotype promoting advanced, symptomatic atherosclerosis.


Subject(s)
Atherosclerosis , Gene Regulatory Networks , Single-Cell Analysis , Humans , Animals , Atherosclerosis/genetics , Atherosclerosis/metabolism , Atherosclerosis/pathology , Mice , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Male , Plaque, Atherosclerotic , Disease Progression , Female , Macrophages/metabolism , Macrophages/pathology , Mice, Knockout , Receptors, LDL/genetics , Receptors, LDL/metabolism , Mice, Inbred C57BL , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/pathology
3.
Cell Rep ; 43(3): 113911, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38446668

ABSTRACT

Claudin-5 (CLDN5) is an endothelial tight junction protein essential for blood-brain barrier (BBB) formation. Abnormal CLDN5 expression is common in brain disease, and knockdown of Cldn5 at the BBB has been proposed to facilitate drug delivery to the brain. To study the consequences of CLDN5 loss in the mature brain, we induced mosaic endothelial-specific Cldn5 gene ablation in adult mice (Cldn5iECKO). These mice displayed increased BBB permeability to tracers up to 10 kDa in size from 6 days post induction (dpi) and ensuing lethality from 10 dpi. Single-cell RNA sequencing at 11 dpi revealed profound transcriptomic differences in brain endothelial cells regardless of their Cldn5 status in mosaic mice, suggesting major non-cell-autonomous responses. Reactive microglia and astrocytes suggested rapid cellular responses to BBB leakage. Our study demonstrates a critical role for CLDN5 in the adult BBB and provides molecular insight into the consequences and risks associated with CLDN5 inhibition.


Subject(s)
Blood-Brain Barrier , Endothelial Cells , Animals , Mice , Biological Transport , Blood-Brain Barrier/metabolism , Brain/metabolism , Claudin-5/genetics , Claudin-5/metabolism , Endothelial Cells/metabolism
4.
Neuron ; 111(23): 3745-3764.e7, 2023 Dec 06.
Article in English | MEDLINE | ID: mdl-37776854

ABSTRACT

Leptomeninges, consisting of the pia mater and arachnoid, form a connective tissue investment and barrier enclosure of the brain. The exact nature of leptomeningeal cells has long been debated. In this study, we identify five molecularly distinct fibroblast-like transcriptomes in cerebral leptomeninges; link them to anatomically distinct cell types of the pia, inner arachnoid, outer arachnoid barrier, and dural border layer; and contrast them to a sixth fibroblast-like transcriptome present in the choroid plexus and median eminence. Newly identified transcriptional markers enabled molecular characterization of cell types responsible for adherence of arachnoid layers to one another and for the arachnoid barrier. These markers also proved useful in identifying the molecular features of leptomeningeal development, injury, and repair that were preserved or changed after traumatic brain injury. Together, the findings highlight the value of identifying fibroblast transcriptional subsets and their cellular locations toward advancing the understanding of leptomeningeal physiology and pathology.


Subject(s)
Arachnoid , Meninges , Mice , Animals , Arachnoid/anatomy & histology , Pia Mater , Choroid Plexus , Brain
5.
Cell Rep Methods ; 3(3): 100431, 2023 03 27.
Article in English | MEDLINE | ID: mdl-37056377

ABSTRACT

Studying disease-related changes in the brain vasculature is warranted due to its crucial role in supplying oxygen and nutrients and removing waste and due to the anticipated vascular dysfunction in brain diseases. To this end, we have developed a protocol for fast and simple isolation of brain vascular fragments without the use of transgenic reporters. We used it to isolate and analyze 22,515 cells by single-cell RNA sequencing. The cells distributed into 23 distinct clusters corresponding to all known vascular and perivascular cell types in the brain. Western blot analysis also suggested that the protocol is suitable for proteomic analysis. We further adapted it for the establishment of primary cell cultures. The protocol generated highly reproducible results. In conclusion, we have developed a simple and robust brain vascular isolation protocol suitable for different experimental modalities, such as single-cell analyses, western blotting, and primary cell culture.


Subject(s)
Cardiovascular System , Proteomics , Mice , Animals , Brain/blood supply , Cells, Cultured
6.
J Exp Med ; 220(4)2023 04 03.
Article in English | MEDLINE | ID: mdl-36688917

ABSTRACT

Oncogenic mutations in PIK3CA, encoding p110α-PI3K, are a common cause of venous and lymphatic malformations. Vessel type-specific disease pathogenesis is poorly understood, hampering development of efficient therapies. Here, we reveal a new immune-interacting subtype of Ptx3-positive dermal lymphatic capillary endothelial cells (iLECs) that recruit pro-lymphangiogenic macrophages to promote progressive lymphatic overgrowth. Mouse model of Pik3caH1047R-driven vascular malformations showed that proliferation was induced in both venous and lymphatic ECs but sustained selectively in LECs of advanced lesions. Single-cell transcriptomics identified the iLEC population, residing at lymphatic capillary terminals of normal vasculature, that was expanded in Pik3caH1047R mice. Expression of pro-inflammatory genes, including monocyte/macrophage chemokine Ccl2, in Pik3caH1047R-iLECs was associated with recruitment of VEGF-C-producing macrophages. Macrophage depletion, CCL2 blockade, or anti-inflammatory COX-2 inhibition limited Pik3caH1047R-driven lymphangiogenesis. Thus, targeting the paracrine crosstalk involving iLECs and macrophages provides a new therapeutic opportunity for lymphatic malformations. Identification of iLECs further indicates that peripheral lymphatic vessels not only respond to but also actively orchestrate inflammatory processes.


Subject(s)
Endothelial Cells , Lymphatic Vessels , Mice , Animals , Endothelial Cells/metabolism , Lymphangiogenesis/physiology , Chemokine CCL2 , Capillaries
7.
Dev Cell ; 57(20): 2426-2443.e6, 2022 10 24.
Article in English | MEDLINE | ID: mdl-36283392

ABSTRACT

Smooth muscle cells (SMCs) execute important physiological functions in numerous vital organ systems, including the vascular, gastrointestinal, respiratory, and urogenital tracts. SMC differ morphologically and functionally at these different anatomical locations, but the molecular underpinnings of the differences remain poorly understood. Here, using deep single-cell RNA sequencing combined with in situ gene and protein expression analysis in four murine organs-heart, aorta, lung, and colon-we identify a molecular basis for high-level differences among vascular, visceral, and airway SMC, as well as more subtle differences between, for example, SMC in elastic and muscular arteries and zonation of elastic artery SMC along the direction of blood flow. Arterial SMC exhibit extensive organotypic heterogeneity, whereas venous SMC are similar across organs. We further identify a specific SMC subtype within the pulmonary vasculature. This comparative SMC cross-organ resource offers insight into SMC subtypes and their specific functions.


Subject(s)
Muscle, Smooth, Vascular , Transcriptome , Mice , Animals , Muscle, Smooth, Vascular/metabolism , Transcriptome/genetics , Myocytes, Smooth Muscle/metabolism , Aorta , Cells, Cultured
8.
Nat Commun ; 13(1): 3983, 2022 07 09.
Article in English | MEDLINE | ID: mdl-35810168

ABSTRACT

The small intestinal villus tip is the first point of contact for lumen-derived substances including nutrients and microbial products. Electron microscopy studies from the early 1970s uncovered unusual spatial organization of small intestinal villus tip blood vessels: their exterior, epithelial-facing side is fenestrated, while the side facing the villus stroma is non-fenestrated, covered by pericytes and harbors endothelial nuclei. Such organization optimizes the absorption process, however the molecular mechanisms maintaining this highly specialized structure remain unclear. Here we report that perivascular LGR5+ villus tip telocytes (VTTs) are necessary for maintenance of villus tip endothelial cell polarization and fenestration by sequestering VEGFA signaling. Mechanistically, unique VTT expression of the protease ADAMTS18 is necessary for VEGFA signaling sequestration through limiting fibronectin accumulation. Therefore, we propose a model in which LGR5+ ADAMTS18+ telocytes are necessary to maintain a "just-right" level and location of VEGFA signaling in intestinal villus blood vasculature to ensure on one hand the presence of sufficient endothelial fenestrae, while avoiding excessive leakiness of the vessels and destabilization of villus tip epithelial structures.


Subject(s)
Intestines , Telocytes , Duodenum , Intestinal Mucosa/metabolism , Nutrients
9.
Stem Cell Reports ; 17(7): 1546-1560, 2022 07 12.
Article in English | MEDLINE | ID: mdl-35714596

ABSTRACT

Hematopoiesis is maintained by functionally diverse lineage-biased hematopoietic stem cells (HSCs). The functional significance of HSC heterogeneity and the regulatory mechanisms underlying lineage bias are not well understood. However, absolute purification of HSC subtypes with a pre-determined behavior remains challenging, highlighting the importance of continued efforts toward prospective isolation of homogeneous HSC subsets. In this study, we demonstrate that CD49b subdivides the most primitive HSC compartment into functionally distinct subtypes: CD49b- HSCs are highly enriched for myeloid-biased and the most durable cells, while CD49b+ HSCs are enriched for multipotent cells with lymphoid bias and reduced self-renewal ability. We further demonstrate considerable transcriptional similarities between CD49b- and CD49b+ HSCs but distinct differences in chromatin accessibility. Our studies highlight the diversity of HSC functional behaviors and provide insights into the molecular regulation of HSC heterogeneity through transcriptional and epigenetic mechanisms.


Subject(s)
Hematopoietic Stem Cells , Integrin alpha2 , Cell Differentiation/genetics , Cell Lineage/genetics , Hematopoiesis/genetics , Multipotent Stem Cells
10.
Stem Cell Reports ; 17(5): 1089-1104, 2022 05 10.
Article in English | MEDLINE | ID: mdl-35452595

ABSTRACT

Humanized mouse models and mouse-adapted SARS-CoV-2 virus are increasingly used to study COVID-19 pathogenesis, so it is important to learn where the SARS-CoV-2 receptor ACE2 is expressed. Here we mapped ACE2 expression during mouse postnatal development and in adulthood. Pericytes in the CNS, heart, and pancreas express ACE2 strongly, as do perineurial and adrenal fibroblasts, whereas endothelial cells do not at any location analyzed. In a number of other organs, pericytes do not express ACE2, including in the lung where ACE2 instead is expressed in bronchial epithelium and alveolar type II cells. The onset of ACE2 expression is organ specific: in bronchial epithelium already at birth, in brain pericytes before, and in heart pericytes after postnatal day 10.5. Establishing the vascular localization of ACE2 expression is central to correctly interpret data from modeling COVID-19 in the mouse and may shed light on the cause of vascular COVID-19 complications.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 , Pericytes , Angiotensin-Converting Enzyme 2/metabolism , Animals , COVID-19/complications , Cardiovascular Diseases/virology , Endothelial Cells , Mice , Pericytes/metabolism , SARS-CoV-2
11.
Exp Cell Res ; 402(2): 112576, 2021 05 15.
Article in English | MEDLINE | ID: mdl-33798592

ABSTRACT

The brain vasculature has several specific features, one of them being the blood-brain barrier (BBB), which supports and protects the brain by allowing for the passage of oxygen and nutrients, while at the same time preventing passage of pathogens and toxins. The BBB also prevents efficient delivery of drugs to the brain, e.g. for treatment of brain tumors. In the murine brain, perivascular fibroblasts were recently identified as a novel potential constituent of the BBB. Here we present the existence of human cells that could be the equivalent to the murine brain perivascular fibroblasts. Using RNA sequencing, we show a similar transcriptomic profile of cultured human brain cells and murine perivascular fibroblasts. These data open up a window for new hypotheses on cell types involved in human CNS diseases.


Subject(s)
Brain/ultrastructure , Cell Lineage/genetics , Central Nervous System/ultrastructure , Fibroblasts/metabolism , Animals , Biological Transport/genetics , Blood-Brain Barrier/ultrastructure , Brain/blood supply , Brain/metabolism , Central Nervous System/blood supply , Central Nervous System/metabolism , Drug Delivery Systems , Humans , Mice
12.
Dis Model Mech ; 2021 Jan 28.
Article in English | MEDLINE | ID: mdl-33509954

ABSTRACT

Infantile myofibromatosis (IMF) is a benign tumor form characterized by the development of nonmetastatic tumors in skin, bone, muscle and sometimes viscera. Autosomal dominant forms of IMF are caused by mutations in the PDGFRB gene, but a family carrying a L1519P mutation in the NOTCH3 gene has also recently been identified. In this report, we address the molecular consequences of the NOTCH3L1519P mutation and the relationship between the NOTCH and PDGFRB signaling in IMF. The NOTCH3L1519P receptor generates enhanced downstream signaling in a ligand-independent manner. Despite the enhanced signaling, the NOTCH3L1519P receptor is absent from the cell surface and instead accumulates in the endoplasmic reticulum. Furthermore, the localization of the NOTCH3L1519P receptor in the bipartite, heterodimeric state is altered, combined with avid secretion of the mutated extracellular domain from the cell. Chloroquine treatment strongly reduces the amount of secreted NOTCH3L1519P extracellular domain and decreases signaling. Finally, NOTCH3L1519P upregulates PDGFRB expression in fibroblasts, supporting a functional link between Notch and PDGF dysregulation in IMF. Collectively, our data define a NOTCH3-PDGFRB axis in IMF, where an IMF-mutated NOTCH3 receptor elevates PDGFRB expression. The functional characterization of a ligand-independent gain-of-function NOTCH3 mutation is important for Notch therapy considerations for IMF, including strategies aimed at altering lysosome function.

13.
Circ Res ; 128(4): e46-e62, 2021 02 19.
Article in English | MEDLINE | ID: mdl-33375813

ABSTRACT

RATIONALE: Pericytes are capillary mural cells playing a role in stabilizing newly formed blood vessels during development and tissue repair. Loss of pericytes has been described in several brain disorders, and genetically induced pericyte deficiency in the brain leads to increased macromolecular leakage across the blood-brain barrier (BBB). However, the molecular details of the endothelial response to pericyte deficiency remain elusive. OBJECTIVE: To map the transcriptional changes in brain endothelial cells resulting from lack of pericyte contact at single-cell level and to correlate them with regional heterogeneities in BBB function and vascular phenotype. METHODS AND RESULTS: We reveal transcriptional, morphological, and functional consequences of pericyte absence for brain endothelial cells using a combination of methodologies, including single-cell RNA sequencing, tracer analyses, and immunofluorescent detection of protein expression in pericyte-deficient adult Pdgfbret/ret mice. We find that endothelial cells without pericyte contact retain a general BBB-specific gene expression profile, however, they acquire a venous-shifted molecular pattern and become transformed regarding the expression of numerous growth factors and regulatory proteins. Adult Pdgfbret/ret brains display ongoing angiogenic sprouting without concomitant cell proliferation providing unique insights into the endothelial tip cell transcriptome. We also reveal heterogeneous modes of pericyte-deficient BBB impairment, where hotspot leakage sites display arteriolar-shifted identity and pinpoint putative BBB regulators. By testing the causal involvement of some of these using reverse genetics, we uncover a reinforcing role for angiopoietin 2 at the BBB. CONCLUSIONS: By elucidating the complexity of endothelial response to pericyte deficiency at cellular resolution, our study provides insight into the importance of brain pericytes for endothelial arterio-venous zonation, angiogenic quiescence, and a limited set of BBB functions. The BBB-reinforcing role of ANGPT2 (angiopoietin 2) is paradoxical given its wider role as TIE2 (TEK receptor tyrosine kinase) receptor antagonist and may suggest a unique and context-dependent function of ANGPT2 in the brain.


Subject(s)
Blood-Brain Barrier/metabolism , Pericytes/cytology , Animals , Blood-Brain Barrier/cytology , Blood-Brain Barrier/pathology , Cell Proliferation , Cells, Cultured , Endothelial Cells/metabolism , Endothelial Cells/physiology , Lymphokines/deficiency , Lymphokines/genetics , Mice , Mice, Inbred C57BL , Neovascularization, Physiologic , Pericytes/metabolism , Pericytes/pathology , Platelet-Derived Growth Factor/deficiency , Platelet-Derived Growth Factor/genetics , Single-Cell Analysis , Transcriptome
15.
Nat Commun ; 11(1): 3953, 2020 08 07.
Article in English | MEDLINE | ID: mdl-32769974

ABSTRACT

Many important cell types in adult vertebrates have a mesenchymal origin, including fibroblasts and vascular mural cells. Although their biological importance is undisputed, the level of mesenchymal cell heterogeneity within and between organs, while appreciated, has not been analyzed in detail. Here, we compare single-cell transcriptional profiles of fibroblasts and vascular mural cells across four murine muscular organs: heart, skeletal muscle, intestine and bladder. We reveal gene expression signatures that demarcate fibroblasts from mural cells and provide molecular signatures for cell subtype identification. We observe striking inter- and intra-organ heterogeneity amongst the fibroblasts, primarily reflecting differences in the expression of extracellular matrix components. Fibroblast subtypes localize to discrete anatomical positions offering novel predictions about physiological function(s) and regulatory signaling circuits. Our data shed new light on the diversity of poorly defined classes of cells and provide a foundation for improved understanding of their roles in physiological and pathological processes.


Subject(s)
Cell Differentiation , Fibroblasts/physiology , Mesenchymal Stem Cells/physiology , Myocytes, Smooth Muscle/physiology , Pericytes/physiology , Animals , Cell Separation , Coronary Vessels/cytology , Extracellular Matrix/metabolism , Fibroblasts/cytology , Flow Cytometry , Intestines/blood supply , Intestines/cytology , Male , Mice , Muscle, Skeletal/blood supply , Muscle, Skeletal/cytology , Muscle, Smooth, Vascular/cytology , Myocardium/cytology , Myocytes, Smooth Muscle/cytology , Pericytes/cytology , RNA-Seq , Single-Cell Analysis , Urinary Bladder/blood supply , Urinary Bladder/cytology
16.
Front Cardiovasc Med ; 7: 52, 2020.
Article in English | MEDLINE | ID: mdl-32426372

ABSTRACT

Single-cell transcriptomics promise to revolutionize our understanding of the vasculature. Emerging computational methods applied to high-dimensional single-cell data allow integration of results between samples and species and illuminate the diversity and underlying developmental and architectural organization of cell populations. Here, we illustrate these methods in the analysis of mouse lymph node (LN) lymphatic endothelial cells (LEC) at single-cell resolution. Clustering identifies five well-delineated subsets, including two medullary sinus subsets not previously recognized as distinct. Nearest neighbor alignments in trajectory space position the major subsets in a sequence that recapitulates the known features and suggests novel features of LN lymphatic organization, providing a transcriptional map of the lymphatic endothelial niches and of the transitions between them. Differences in gene expression reveal specialized programs for (1) subcapsular ceiling endothelial interactions with the capsule connective tissue and cells; (2) subcapsular floor regulation of lymph borne cell entry into the LN parenchyma and antigen presentation; and (3) pathogen interactions and (4) LN remodeling in distinct medullary subsets. LEC of the subcapsular sinus floor and medulla, which represent major sites of cell entry and exit from the LN parenchyma respectively, respond robustly to oxazolone inflammation challenge with enriched signaling pathways that converge on both innate and adaptive immune responses. Integration of mouse and human single-cell profiles reveals a conserved cross-species pattern of lymphatic vascular niches and gene expression, as well as specialized human subsets and genes unique to each species. The examples provided demonstrate the power of single-cell analysis in elucidating endothelial cell heterogeneity, vascular organization, and endothelial cell responses. We discuss the findings from the perspective of LEC functions in relation to niche formations in the unique stromal and highly immunological environment of the LN.

17.
Elife ; 92020 02 24.
Article in English | MEDLINE | ID: mdl-32091396

ABSTRACT

Despite the medical importance of G protein-coupled receptors (GPCRs), in vivo cellular heterogeneity of GPCR signaling and downstream transcriptional responses are not understood. We report the comprehensive characterization of transcriptomes (bulk and single-cell) and chromatin domains regulated by sphingosine 1-phosphate receptor-1 (S1PR1) in adult mouse aortic endothelial cells. First, S1PR1 regulates NFκB and nuclear glucocorticoid receptor pathways to suppress inflammation-related mRNAs. Second, S1PR1 signaling in the heterogenous endothelial cell (EC) subtypes occurs at spatially-distinct areas of the aorta. For example, a transcriptomically distinct arterial EC population at vascular branch points (aEC1) exhibits ligand-independent S1PR1/ß-arrestin coupling. In contrast, circulatory S1P-dependent S1PR1/ß-arrestin coupling was observed in non-branch point aEC2 cells that exhibit an inflammatory gene expression signature. Moreover, S1P/S1PR1 signaling regulates the expression of lymphangiogenic and inflammation-related transcripts in an adventitial lymphatic EC (LEC) population in a ligand-dependent manner. These insights add resolution to existing concepts of endothelial heterogeneity, GPCR signaling and S1P biology.


Subject(s)
Aorta/metabolism , Endothelium, Lymphatic/metabolism , Endothelium, Vascular/metabolism , Lysophospholipids/metabolism , Sphingosine/analogs & derivatives , Transcriptome , Animals , Green Fluorescent Proteins/metabolism , Mice , Mice, Transgenic , Sequence Analysis, RNA/methods , Signal Transduction , Single-Cell Analysis/methods , Sphingosine/metabolism , Sphingosine-1-Phosphate Receptors/genetics , Sphingosine-1-Phosphate Receptors/metabolism , beta-Arrestins/metabolism
18.
Nat Commun ; 11(1): 71, 2020 01 03.
Article in English | MEDLINE | ID: mdl-31900415

ABSTRACT

Despite advances in the molecular exploration of paediatric cancers, approximately 50% of children with high-risk neuroblastoma lack effective treatment. To identify therapeutic options for this group of high-risk patients, we combine predictive data mining with experimental evaluation in patient-derived xenograft cells. Our proposed algorithm, TargetTranslator, integrates data from tumour biobanks, pharmacological databases, and cellular networks to predict how targeted interventions affect mRNA signatures associated with high patient risk or disease processes. We find more than 80 targets to be associated with neuroblastoma risk and differentiation signatures. Selected targets are evaluated in cell lines derived from high-risk patients to demonstrate reversal of risk signatures and malignant phenotypes. Using neuroblastoma xenograft models, we establish CNR2 and MAPK8 as promising candidates for the treatment of high-risk neuroblastoma. We expect that our method, available as a public tool (targettranslator.org), will enhance and expedite the discovery of risk-associated targets for paediatric and adult cancers.


Subject(s)
Antineoplastic Agents/administration & dosage , Neuroblastoma/drug therapy , Neuroblastoma/genetics , Animals , Cell Line, Tumor , Drug Evaluation, Preclinical , Female , Humans , Male , Mice , Mice, Nude , Mitogen-Activated Protein Kinase 8/antagonists & inhibitors , Mitogen-Activated Protein Kinase 8/genetics , Mitogen-Activated Protein Kinase 8/metabolism , Neuroblastoma/metabolism , Receptor, Cannabinoid, CB2/antagonists & inhibitors , Receptor, Cannabinoid, CB2/genetics , Receptor, Cannabinoid, CB2/metabolism , Xenograft Model Antitumor Assays , Zebrafish
19.
Brain Pathol ; 30(3): 446-464, 2020 05.
Article in English | MEDLINE | ID: mdl-31561281

ABSTRACT

Primary familial brain calcification (PFBC) is an age-dependent and rare neurodegenerative disorder characterized by microvascular calcium phosphate deposits in the deep brain regions. Known genetic causes of PFBC include loss-of-function mutations in genes involved in either of three processes-platelet-derived growth factor (PDGF) signaling, phosphate homeostasis or protein glycosylation-with unclear molecular links. To provide insight into the pathogenesis of PFBC, we analyzed murine models of PFBC for the first two of these processes in Pdgfbret/ret and Slc20a2-/- mice with regard to the structure, molecular composition, development and distribution of perivascular calcified nodules. Analyses by transmission electron microscopy and immunofluorescence revealed that calcified nodules in both of these models have a multilayered ultrastructure and occur in direct contact with reactive astrocytes and microglia. However, whereas nodules in Pdgfbret/ret mice were large, solitary and smooth surfaced, the nodules in Slc20a2-/- mice were multi-lobulated and occurred in clusters. The regional distribution of nodules also differed between the two models. Proteomic analysis and immunofluorescence stainings revealed a common molecular composition of the nodules in the two models, involving proteins implicated in bone homeostasis, but also proteins not previously linked to tissue mineralization. While the brain vasculature of Pdgfbret/ret mice has been reported to display reduced pericyte coverage and abnormal permeability, we found that Slc20a2-/- mice have a normal pericyte coverage and no overtly increased permeability. Thus, lack of pericytes and increase in permeability of the blood-brain barrier are likely not the causal triggers for PFBC pathogenesis. Instead, gene expression and spatial correlations suggest that astrocytes are intimately linked to the calcification process in PFBC.


Subject(s)
Astrocytes/metabolism , Brain Diseases/metabolism , Calcinosis/metabolism , Extracellular Matrix/metabolism , Microglia/metabolism , Neurodegenerative Diseases/metabolism , Animals , Astrocytes/pathology , Brain Diseases/genetics , Brain Diseases/pathology , Calcinosis/genetics , Calcinosis/pathology , Disease Models, Animal , Disease Progression , Extracellular Matrix/pathology , Female , Male , Mice , Mice, Transgenic , Microglia/pathology , Mutation , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/pathology , Platelet-Derived Growth Factor/genetics , Platelet-Derived Growth Factor/metabolism , Sodium-Phosphate Cotransporter Proteins, Type III/genetics , Sodium-Phosphate Cotransporter Proteins, Type III/metabolism
20.
Cardiovasc Res ; 115(12): 1705-1715, 2019 Oct 01.
Article in English | MEDLINE | ID: mdl-31350876

ABSTRACT

Cellular characteristics and their adjustment to a state of disease have become more evident due to recent advances in imaging, fluorescent reporter mice, and whole genome RNA sequencing. The uncovered cellular heterogeneity and/or plasticity potentially complicates experimental studies and clinical applications, as markers derived from whole tissue 'bulk' sequencing is unable to yield a subtype transcriptome and specific markers. Here, we propose definitions on heterogeneity and plasticity, discuss current knowledge thereof in the vasculature and how this may be improved by single-cell sequencing (SCS). SCS is emerging as an emerging technique, enabling researchers to investigate different cell populations in more depth than ever before. Cell selection methods, e.g. flow assisted cell sorting, and the quantity of cells can influence the choice of SCS method. Smart-Seq2 offers sequencing of the complete mRNA molecule on a low quantity of cells, while Drop-seq is possible on large numbers of cells on a more superficial level. SCS has given more insight in heterogeneity in healthy vasculature, where it revealed that zonation is crucial in gene expression profiles among the anatomical axis. In diseased vasculature, this heterogeneity seems even more prominent with discovery of new immune subsets in atherosclerosis as proof. Vascular smooth muscle cells and mesenchymal cells also share these plastic characteristics with the ability to up-regulate markers linked to stem cells, such as Sca-1 or CD34. Current SCS studies show some limitations to the number of replicates, quantity of cells used, or the loss of spatial information. Bioinformatical tools could give some more insight in current datasets, making use of pseudo-time analysis or RNA velocity to investigate cell differentiation or polarization. In this review, we discuss the use of SCS in unravelling heterogeneity in the vasculature, its current limitations and promising future applications.


Subject(s)
Arteries/metabolism , Atherosclerosis/genetics , Atherosclerosis/metabolism , Cell Plasticity/genetics , Genetic Heterogeneity , RNA, Messenger/genetics , RNA-Seq , Single-Cell Analysis , Animals , Arteries/pathology , Atherosclerosis/pathology , Gene Expression Regulation , Humans , Phenotype , Plaque, Atherosclerotic , RNA, Messenger/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...