Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 100
Filter
1.
Mech Ageing Dev ; 220: 111959, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38950628

ABSTRACT

Oligodendrocyte precursor cells (OPCs) comprise 5-8 % of the adult glial cell population and stand out as the most proliferative cell type in the central nervous system (CNS). OPCs are responsible for generating oligodendrocytes (OLs), the myelinating cells of the CNS. However, OPC functions decline as we age, resulting in impaired differentiation and inadequate remyelination. This review explores the cellular and molecular changes associated with OPC aging, and their impact on OPC differentiation and functionality. Furthermore, it examines the impact of OPC aging within the context of multiple sclerosis and Alzheimer's disease, both neurodegenerative conditions wherein aged OPCs exacerbate disease progression by impeding remyelination. Moreover, various pharmacological interventions targeting pathways related to senescence and differentiation are discussed as potential strategies to rejuvenate aged OPCs. Enhancing our understanding of OPC aging mechanisms holds promise for developing new therapies to improve remyelination and repair in age-related neurodegenerative disorders.


Subject(s)
Brain , Cell Differentiation , Cellular Senescence , Oligodendrocyte Precursor Cells , Humans , Oligodendrocyte Precursor Cells/metabolism , Oligodendrocyte Precursor Cells/physiology , Cellular Senescence/physiology , Animals , Brain/metabolism , Brain/pathology , Cell Differentiation/physiology , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Multiple Sclerosis/pathology , Multiple Sclerosis/metabolism , Aging/physiology , Aging/metabolism , Aging/pathology , Oligodendroglia/metabolism , Remyelination/physiology
2.
Cells ; 13(12)2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38920631

ABSTRACT

Microglia activity can drive excessive synaptic loss during the prodromal phase of Alzheimer's disease (AD) and is associated with lowered cyclic adenosine monophosphate (cAMP) due to cAMP phosphodiesterase 4B (PDE4B). This study aimed to investigate whether long-term inhibition of PDE4B by A33 (3 mg/kg/day) can prevent synapse loss and its associated cognitive decline in APPswe/PS1dE9 mice. This model is characterized by a chimeric mouse/human APP with the Swedish mutation and human PSEN1 lacking exon 9 (dE9), both under the control of the mouse prion protein promoter. The effects on cognitive function of prolonged A33 treatment from 20 days to 4 months of age, was assessed at 7-8 months. PDE4B inhibition significantly improved both the working and spatial memory of APPswe/PSdE9 mice after treatment ended. At the cellular level, in vitro inhibition of PDE4B induced microglial filopodia formation, suggesting that regulation of PDE4B activity can counteract microglia activation. Further research is needed to investigate if this could prevent microglia from adopting their 'disease-associated microglia (DAM)' phenotype in vivo. These findings support the possibility that PDE4B is a potential target in combating AD pathology and that early intervention using A33 may be a promising treatment strategy for AD.


Subject(s)
Alzheimer Disease , Cognition , Cyclic Nucleotide Phosphodiesterases, Type 4 , Disease Models, Animal , Mice, Transgenic , Microglia , Phosphodiesterase 4 Inhibitors , Animals , Cyclic Nucleotide Phosphodiesterases, Type 4/metabolism , Mice , Alzheimer Disease/drug therapy , Alzheimer Disease/pathology , Cognition/drug effects , Phosphodiesterase 4 Inhibitors/pharmacology , Phosphodiesterase 4 Inhibitors/therapeutic use , Phosphodiesterase 4 Inhibitors/administration & dosage , Microglia/drug effects , Microglia/metabolism , Microglia/pathology , Presenilin-1/genetics , Presenilin-1/metabolism , Humans , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Male
3.
Biomed Pharmacother ; 177: 117009, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38908196

ABSTRACT

Cyclic adenosine monophosphate (cAMP) is a key second messenger that regulates signal transduction pathways pivotal for numerous biological functions. Intracellular cAMP levels are spatiotemporally regulated by their hydrolyzing enzymes called phosphodiesterases (PDEs). It has been shown that increased cAMP levels in the central nervous system (CNS) promote neuroplasticity, neurotransmission, neuronal survival, and myelination while suppressing neuroinflammation. Thus, elevating cAMP levels through PDE inhibition provides a therapeutic approach for multiple CNS disorders, including multiple sclerosis, stroke, spinal cord injury, amyotrophic lateral sclerosis, traumatic brain injury, and Alzheimer's disease. In particular, inhibition of the cAMP-specific PDE4 subfamily is widely studied because of its high expression in the CNS. So far, the clinical translation of full PDE4 inhibitors has been hampered because of dose-limiting side effects. Hence, focusing on signaling cascades downstream activated upon PDE4 inhibition presents a promising strategy, offering novel and pharmacologically safe targets for treating CNS disorders. Yet, the underlying downstream signaling pathways activated upon PDE(4) inhibition remain partially elusive. This review provides a comprehensive overview of the existing knowledge regarding downstream mediators of cAMP signaling induced by PDE4 inhibition or cAMP stimulators. Furthermore, we highlight existing gaps and future perspectives that may incentivize additional downstream research concerning PDE(4) inhibition, thereby providing novel therapeutic approaches for CNS disorders.

4.
Nutrients ; 16(11)2024 May 25.
Article in English | MEDLINE | ID: mdl-38892548

ABSTRACT

We previously demonstrated that diet supplementation with seaweed Sargassum fusiforme (S. fusiforme) prevented AD-related pathology in a mouse model of Alzheimer's Disease (AD). Here, we tested a lipid extract of seaweed Himanthalia elongata (H. elongata) and a supercritical fluid (SCF) extract of S. fusiforme that is free of excess inorganic arsenic. Diet supplementation with H. elongata extract prevented cognitive deterioration in APPswePS1ΔE9 mice. Similar trends were observed for the S. fusiforme SCF extract. The cerebral amyloid-ß plaque load remained unaffected. However, IHC analysis revealed that both extracts lowered glial markers in the brains of APPswePS1ΔE9 mice. While cerebellar cholesterol concentrations remained unaffected, both extracts increased desmosterol, an endogenous LXR agonist with anti-inflammatory properties. Both extracts increased cholesterol efflux, and particularly, H. elongata extract decreased the production of pro-inflammatory cytokines in LPS-stimulated THP-1-derived macrophages. Additionally, our findings suggest a reduction of AD-associated phosphorylated tau and promotion of early oligodendrocyte differentiation by H. elongata. RNA sequencing on the hippocampus of one-week-treated APPswePS1ΔE9 mice revealed effects of H. elongata on, amongst others, acetylcholine and synaptogenesis signaling pathways. In conclusion, extracts of H. elongata and S. fusiforme show potential to reduce AD-related pathology in APPswePS1ΔE9 mice. Increasing desmosterol concentrations may contribute to these effects by dampening neuroinflammation.


Subject(s)
Alzheimer Disease , Dietary Supplements , Disease Models, Animal , Seaweed , Animals , Alzheimer Disease/drug therapy , Seaweed/chemistry , Mice , Hippocampus/drug effects , Hippocampus/metabolism , Plant Extracts/pharmacology , Mice, Transgenic , Sargassum/chemistry , Humans , Plaque, Amyloid , Cholesterol/metabolism , Cholesterol/blood , Male , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , tau Proteins/metabolism
5.
Neurotherapeutics ; 21(4): e00372, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38760316

ABSTRACT

Spinal cord injury (SCI) is a life-changing event that severely impacts the patient's quality of life. Modulating neuroinflammation, which exacerbates the primary injury, and stimulating neuro-regenerative repair mechanisms are key strategies to improve functional recovery. Cyclic adenosine monophosphate (cAMP) is a second messenger crucially involved in both processes. Following SCI, intracellular levels of cAMP are known to decrease over time. Therefore, preventing cAMP degradation represents a promising strategy to suppress inflammation while stimulating regeneration. Intracellular cAMP levels are controlled by its hydrolyzing enzymes phosphodiesterases (PDEs). The PDE4 family is most abundantly expressed in the central nervous system (CNS) and its inhibition has been shown to be therapeutically relevant for managing SCI pathology. Unfortunately, the use of full PDE4 inhibitors at therapeutic doses is associated with severe emetic side effects, hampering their translation toward clinical applications. Therefore, in this study, we evaluated the effect of inhibiting specific PDE4 subtypes (PDE4B and PDE4D) on inflammatory and regenerative processes following SCI, as inhibitors selective for these subtypes have been demonstrated to be well-tolerated. We reveal that administration of the PDE4D inhibitor Gebr32a, even when starting 2 dpi, but not the PDE4B inhibitor A33, improved functional as well as histopathological outcomes after SCI, comparable to results obtained with the full PDE4 inhibitor roflumilast. Furthermore, using a luminescent human iPSC-derived neurospheroid model, we show that PDE4D inhibition stabilizes neural viability by preventing apoptosis and stimulating neuronal differentiation. These findings strongly suggest that specific PDE4D inhibition offers a novel therapeutic approach for SCI.

6.
FEBS Lett ; 598(13): 1591-1604, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38724485

ABSTRACT

Inhibition of the cyclic-AMP degrading enzyme phosphodiesterase type 4 (PDE4) in the brains of animal models is protective in Alzheimer's disease (AD). We show for the first time that enzymes from the subfamily PDE4D not only colocalize with beta-amyloid (Aß) plaques in a mouse model of AD but that Aß directly associates with the catalytic machinery of the enzyme. Peptide mapping suggests that PDE4D is the preferential PDE4 subfamily for Aß as it possesses a unique binding site. Intriguingly, exogenous addition of Aß to cells overexpressing the PDE4D5 longform caused PDE4 activation and a decrease in cAMP. We suggest a novel mechanism where PDE4 longforms can be activated by Aß, resulting in the attenuation of cAMP signalling to promote loss of cognitive function in AD.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Cyclic AMP , Cyclic Nucleotide Phosphodiesterases, Type 4 , Neurons , Animals , Cyclic Nucleotide Phosphodiesterases, Type 4/metabolism , Cyclic Nucleotide Phosphodiesterases, Type 4/genetics , Amyloid beta-Peptides/metabolism , Cyclic AMP/metabolism , Mice , Neurons/metabolism , Humans , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Alzheimer Disease/genetics , Protein Binding , Enzyme Activation , Mice, Transgenic , Plaque, Amyloid/metabolism , Plaque, Amyloid/pathology
7.
ACS Chem Neurosci ; 15(7): 1424-1431, 2024 04 03.
Article in English | MEDLINE | ID: mdl-38478848

ABSTRACT

Excitatory amino acid transporters (EAATs) are important regulators of amino acid transport and in particular glutamate. Recently, more interest has arisen in these transporters in the context of neurodegenerative diseases. This calls for ways to modulate these targets to drive glutamate transport, EAAT2 and EAAT3 in particular. Several inhibitors (competitive and noncompetitive) exist to block glutamate transport; however, activators remain scarce. Recently, GT949 was proposed as a selective activator of EAAT2, as tested in a radioligand uptake assay. In the presented research, we aimed to validate the use of GT949 to activate EAAT2-driven glutamate transport by applying an innovative, impedance-based, whole-cell assay (xCELLigence). A broad range of GT949 concentrations in a variety of cellular environments were tested in this assay. As expected, no activation of EAAT3 could be detected. Yet, surprisingly, no biological activation of GT949 on EAAT2 could be observed in this assay either. To validate whether the impedance-based assay was not suited to pick up increased glutamate uptake or if the compound might not induce activation in this setup, we performed radioligand uptake assays. Two setups were utilized; a novel method compared to previously published research, and in a reproducible fashion copying the methods used in the existing literature. Nonetheless, activation of neither EAAT2 nor EAAT3 could be observed in these assays. Furthermore, no evidence of GT949 binding or stabilization of purified EAAT2 could be observed in a thermal shift assay. To conclude, based on experimental evidence in the present study GT949 requires specific assay conditions, which are difficult to reproduce, and the compound cannot simply be classified as an activator of EAAT2 based on the presented evidence. Hence, further research is required to develop the tools needed to identify new EAAT modulators and use their potential as a therapeutic target.


Subject(s)
Excitatory Amino Acid Transporter 2 , Glutamic Acid , Excitatory Amino Acid Transporter 2/metabolism , Electric Impedance , Glutamic Acid/metabolism , Biological Transport , Excitatory Amino Acid Transporter 3/metabolism
8.
Int J Mol Sci ; 25(6)2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38542441

ABSTRACT

One of the major challenges in multiple sclerosis (MS) is to accurately monitor and quantify disability over time. Thus, there is a pressing need to identify new biomarkers for disease progression. Peripheral blood DNA methylation has been demonstrated to be an easily accessible and quantifiable marker in many neurodegenerative diseases. In this study, we aimed to investigate whether methylation patterns that were previously determined in chronic inactive white matter lesions of patients with progressive MS are also reflected in the blood, and whether the latter can serve as a biomarker for disease progression in MS. While our initial analysis revealed differences in the blood methylation state of important myelin-related genes between patients with progressive MS and controls, these findings could not be validated in other independent patient cohorts. Subsequent investigation suggests that sample storage can selectively influence DNA methylation patterns, potentially hindering accurate epigenetic analysis. Therefore, sample storage time should be taken into consideration during the initial sample selection stage in biomarker studies.


Subject(s)
Multiple Sclerosis, Chronic Progressive , Multiple Sclerosis , Humans , Multiple Sclerosis/genetics , Multiple Sclerosis/pathology , Myelin Sheath/pathology , Multiple Sclerosis, Chronic Progressive/pathology , DNA Methylation , Biomarkers , Disease Progression
9.
FASEB J ; 38(2): e23413, 2024 01 31.
Article in English | MEDLINE | ID: mdl-38243760

ABSTRACT

Sphingosine-1-phosphate receptor (S1PR) modulators are clinically used to treat relapse-remitting multiple sclerosis (MS) and the early phase of progressive MS when inflammation still prevails. In the periphery, S1PR modulators prevent lymphocyte egress from lymph nodes, hence hampering neuroinflammation. Recent findings suggest a role for S1PR modulation in remyelination. As the Giα-coupled S1P1 subtype is the most prominently expressed S1PR in oligodendrocyte precursor cells (OPCs), selective modulation (functional antagonism) of S1P1 may have direct effects on OPC functionality. We hypothesized that functional antagonism of S1P1 by ponesimod induces remyelination by boosting OPC differentiation. In the cuprizone mouse model of demyelination, we found ponesimod to decrease the latency time of visual evoked potentials compared to vehicle conditions, which is indicative of functional remyelination. In addition, the Y maze spontaneous alternations test revealed that ponesimod reversed cuprizone-induced working memory deficits. Myelin basic protein (MBP) immunohistochemistry and transmission electron microscopy of the corpus callosum revealed an increase in myelination upon ponesimod treatment. Moreover, treatment with ponesimod alone or in combination with A971432, an S1P5 monoselective modulator, significantly increased primary mouse OPC differentiation based on O4 immunocytochemistry. In conclusion, S1P1 functional antagonism by ponesimod increases remyelination in the cuprizone model of demyelination and significantly increases OPC differentiation in vitro.


Subject(s)
Cuprizone , Demyelinating Diseases , Thiazoles , Mice , Animals , Cuprizone/toxicity , Sphingosine-1-Phosphate Receptors/metabolism , Oligodendroglia , Demyelinating Diseases/chemically induced , Demyelinating Diseases/drug therapy , Evoked Potentials, Visual , Cell Differentiation/physiology , Mice, Inbred C57BL , Myelin Sheath/metabolism , Disease Models, Animal
10.
Fluids Barriers CNS ; 20(1): 95, 2023 Dec 19.
Article in English | MEDLINE | ID: mdl-38114994

ABSTRACT

Autoreactive T lymphocytes crossing the blood-brain barrier (BBB) into the central nervous system (CNS) play a crucial role in the initiation of demyelination and neurodegeneration in multiple sclerosis (MS). Recently, extracellular vesicles (EV) secreted by BBB endothelial cells (BBB-EC) have emerged as a unique form of cell-to-cell communication that contributes to cerebrovascular dysfunction. However, the precise impact of different size-based subpopulations of BBB-EC-derived EV (BBB-EV) on the early stages of MS remains unclear. Therefore, our objective was to investigate the content and function of distinct BBB-EV subpopulations in regulating BBB integrity and their role in T cell transendothelial migration, both in vitro and in vivo. Our study reveals that BBB-ECs release two distinct size based EV populations, namely small EV (sEV; 30-150 nm) and large EV (lEV; 150-300 nm), with a significantly higher secretion of sEV during inflammation. Notably, the expression patterns of cytokines and adhesion markers differ significantly between these BBB-EV subsets, indicating specific functional differences in the regulation of T cell migration. Through in vitro experiments, we demonstrate that lEV, which predominantly reflect their cellular source, play a major role in BBB integrity loss and the enhanced migration of pro-inflammatory Th1 and Th17.1 cells. Conversely, sEV appear to protect BBB function by inducing an anti-inflammatory phenotype in BBB-EC. These findings align with our in vivo data, where the administration of sEV to mice with experimental autoimmune encephalomyelitis (EAE) results in lower disease severity compared to the administration of lEV, which exacerbates disease symptoms. In conclusion, our study highlights the distinct and opposing effects of BBB-EV subpopulations on the BBB, both in vitro and in vivo. These findings underscore the need for further investigation into the diagnostic and therapeutic potential of BBB-EV in the context of MS.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Extracellular Vesicles , Multiple Sclerosis , Mice , Animals , Endothelial Cells/metabolism , Central Nervous System/metabolism , Encephalomyelitis, Autoimmune, Experimental/metabolism , Blood-Brain Barrier/metabolism , Extracellular Vesicles/metabolism
11.
J Alzheimers Dis ; 96(3): 1207-1219, 2023.
Article in English | MEDLINE | ID: mdl-37927260

ABSTRACT

BACKGROUND: Current treatment options for Alzheimer's disease (AD) are limited, inefficient, and often have serious side effects. Oxytocin is a neuropeptide implicated in a variety of central processes, such as social and reproductive behaviors. Among others, it has garnered attention in various domains of psychiatric research, while its role in the development and course of neurodegenerative disorders like AD is rather unknown. OBJECTIVE: This study aimed to investigate the role of exogenous oxytocin administration on memory, specifically in view of AD, as a potential novel treatment option. METHODS: We describe a novel treatment approach by using a relatively low dose of long-term intranasal oxytocin treatment, to restore memory deficits in female APPswePS1dE9 mice. RESULTS: Female APPswePS1dE9 mice treated with oxytocin showed increased spatial memory performance in the object location task and improved working memory in the Y-Maze, while indicating decreased sociability. CONCLUSIONS: These results indicate that oxytocin is able to reverse acquired cognitive deficits in female APPswePS1dE9 mice.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Oxytocin , Presenilin-1 , Animals , Female , Mice , Alzheimer Disease/drug therapy , Alzheimer Disease/psychology , Amyloid beta-Protein Precursor/genetics , Disease Models, Animal , Maze Learning , Memory Disorders/drug therapy , Memory Disorders/etiology , Memory, Short-Term , Mice, Transgenic , Oxytocin/pharmacology , Oxytocin/therapeutic use
12.
Pharmacol Res ; 197: 106970, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37884069

ABSTRACT

Vascular cognitive impairment (VCI) describes neurodegenerative disorders characterized by a vascular component. Pathologically, it involves decreased cerebral blood flow (CBF), white matter lesions, endothelial dysfunction, and blood-brain barrier (BBB) impairments. Molecularly, oxidative stress and inflammation are two of the major underlying mechanisms. Nitric oxide (NO) physiologically stimulates soluble guanylate cyclase (sGC) to induce cGMP production. However, under pathological conditions, NO seems to be at the basis of oxidative stress and inflammation, leading to a decrease in sGC activity and expression. The native form of sGC needs a ferrous heme group bound in order to be sensitive to NO (Fe(II)sGC). Oxidation of sGC leads to the conversion of ferrous to ferric heme (Fe(III)sGC) and even heme-loss (apo-sGC). Both Fe(III)sGC and apo-sGC are insensitive to NO, and the enzyme is therefore inactive. sGC activity can be enhanced either by targeting the NO-sensitive native sGC (Fe(II)sGC), or the inactive, oxidized sGC (Fe(III)sGC) and the heme-free apo-sGC. For this purpose, sGC stimulators acting on Fe(II)sGC and sGC activators acting on Fe(III)sGC/apo-sGC have been developed. These sGC agonists have shown their efficacy in cardiovascular diseases by restoring the physiological and protective functions of the NO-sGC-cGMP pathway, including the reduction of oxidative stress and inflammation, and improvement of vascular functioning. Yet, only very little research has been performed within the cerebrovascular system and VCI pathology when focusing on sGC modulation and its potential protective mechanisms on vascular and neural function. Therefore, within this review, the potential of sGC as a target for treating VCI is highlighted.


Subject(s)
Cognitive Dysfunction , Vascular Diseases , Humans , Soluble Guanylyl Cyclase , Cognitive Dysfunction/drug therapy , Cyclic GMP , Heme , Inflammation
13.
Cells ; 12(19)2023 09 24.
Article in English | MEDLINE | ID: mdl-37830557

ABSTRACT

This study provides evidence of the existence of presynaptic inhibitory sphingosine-1-phosphate receptor 1 (S1P1R) and facilitatory S1P3R in cortical nerve endings (synaptosomes) of healthy mice. The conclusion relies on the findings that (i) the S1P1R agonist CS-2100 (0.1-30 nM) inhibits the 12 mM KCl-evoked glutamate exocytosis (quantified as the release of [3H]D-aspartate) while the S1P3R allosteric agonist CYM-5541 potentiates it and (ii) these effects are inhibited by the S1P1R antagonist Ex 26 (30-300 nM) and the S1P3R antagonist TY-52156 (100-1000 nM), respectively. Confocal microscopy and western blot analysis confirmed the presence of S1P1R and S1P3R proteins in cortical glutamatergic synaptosomes, which were scarcely accessible to biotin in a biotinylation study. Then, we demonstrated that S1P1R and S1P3R densities and their release activity are amplified in cortical synaptosomes of mice suffering from experimental autoimmune encephalomyelitis (EAE), despite receptors maintain their preferential internal distribution. Receptor changes recover following chronic oral therapeutic FTY720 (0.03 mg/Kg/day). These results improve our knowledge of the role of presynaptic release-regulating S1P1Rs and S1P3Rs controlling glutamate transmission in the CNS also unravelling functional adaptations during EAE that recover following chronic FTY720. In a whole, these findings provide new information on the central neuroprotectant activities of FTY720.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Mice , Animals , Encephalomyelitis, Autoimmune, Experimental/metabolism , Fingolimod Hydrochloride/pharmacology , Fingolimod Hydrochloride/therapeutic use , Sphingosine-1-Phosphate Receptors/therapeutic use , Glutamic Acid/metabolism
14.
Prog Neurobiol ; 231: 102532, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37774767

ABSTRACT

Multiple sclerosis (MS) pathology features autoimmune-driven neuroinflammation, demyelination, and failed remyelination. Carnosine is a histidine-containing dipeptide (HCD) with pluripotent homeostatic properties that is able to improve outcomes in an animal MS model (EAE) when supplied exogenously. To uncover if endogenous carnosine is involved in, and protects against, MS-related neuroinflammation, demyelination or remyelination failure, we here studied the HCD-synthesizing enzyme carnosine synthase (CARNS1) in human MS lesions and two preclinical mouse MS models (EAE, cuprizone). We demonstrate that due to its presence in oligodendrocytes, CARNS1 expression is diminished in demyelinated MS lesions and mouse models mimicking demyelination/inflammation, but returns upon remyelination. Carns1-KO mice that are devoid of endogenous HCDs display exaggerated neuroinflammation and clinical symptoms during EAE, which could be partially rescued by exogenous carnosine treatment. Worsening of the disease appears to be driven by a central, not peripheral immune-modulatory, mechanism possibly linked to impaired clearance of the reactive carbonyl acrolein in Carns1-KO mice. In contrast, CARNS1 is not required for normal oligodendrocyte precursor cell differentiation and (re)myelin to occur, and neither endogenous nor exogenous HCDs protect against cuprizone-induced demyelination. In conclusion, the loss of CARNS1 from demyelinated MS lesions can aggravate disease progression through weakening the endogenous protection against neuroinflammation.


Subject(s)
Carnosine , Encephalomyelitis, Autoimmune, Experimental , Multiple Sclerosis , Humans , Mice , Animals , Multiple Sclerosis/drug therapy , Cuprizone/adverse effects , Cuprizone/metabolism , Carnosine/adverse effects , Carnosine/metabolism , Neuroinflammatory Diseases , Myelin Sheath/pathology , Oligodendroglia/pathology , Disease Models, Animal , Encephalomyelitis, Autoimmune, Experimental/chemically induced , Encephalomyelitis, Autoimmune, Experimental/metabolism , Encephalomyelitis, Autoimmune, Experimental/pathology
15.
Acta Neuropathol Commun ; 11(1): 128, 2023 08 07.
Article in English | MEDLINE | ID: mdl-37550790

ABSTRACT

Cerebral small vessel disease is characterised by decreased cerebral blood flow and blood-brain barrier impairments which play a key role in the development of white matter lesions. We hypothesised that cerebral hypoperfusion causes local hypoxia, affecting oligodendrocyte precursor cell-endothelial cell signalling leading to blood-brain barrier dysfunction as an early mechanism for the development of white matter lesions. Bilateral carotid artery stenosis was used as a mouse model for cerebral hypoperfusion. Pimonidazole, a hypoxic cell marker, was injected prior to humane sacrifice at day 7. Myelin content, vascular density, blood-brain barrier leakages, and hypoxic cell density were quantified. Primary mouse oligodendrocyte precursor cells were exposed to hypoxia and RNA sequencing was performed. Vegfa gene expression and protein secretion was examined in an oligodendrocyte precursor cell line exposed to hypoxia. Additionally, human blood plasma VEGFA levels were measured and correlated to blood-brain barrier permeability in normal-appearing white matter and white matter lesions of cerebral small vessel disease patients and controls. Cerebral blood flow was reduced in the stenosis mice, with an increase in hypoxic cell number and blood-brain barrier leakages in the cortical areas but no changes in myelin content or vascular density. Vegfa upregulation was identified in hypoxic oligodendrocyte precursor cells, which was mediated via Hif1α and Epas1. In humans, VEGFA plasma levels were increased in patients versus controls. VEGFA plasma levels were associated with increased blood-brain barrier permeability in normal appearing white matter of patients. Cerebral hypoperfusion mediates hypoxia induced VEGFA expression in oligodendrocyte precursor cells through Hif1α/Epas1 signalling. VEGFA could in turn increase BBB permeability. In humans, increased VEGFA plasma levels in cerebral small vessel disease patients were associated with increased blood-brain barrier permeability in the normal appearing white matter. Our results support a role of VEGFA expression in cerebral hypoperfusion as seen in cerebral small vessel disease.


Subject(s)
Cerebral Small Vessel Diseases , Oligodendrocyte Precursor Cells , White Matter , Humans , Mice , Animals , Blood-Brain Barrier/metabolism , Oligodendrocyte Precursor Cells/metabolism , White Matter/pathology , Hypoxia/metabolism , Cerebral Small Vessel Diseases/pathology , Vascular Endothelial Growth Factor A/metabolism
16.
Nutrients ; 15(13)2023 Jun 30.
Article in English | MEDLINE | ID: mdl-37447330

ABSTRACT

The nuclear liver X receptors (LXRα/ß) and peroxisome proliferator-activated receptors (PPARα/γ) are involved in the regulation of multiple biological processes, including lipid metabolism and inflammation. The activation of these receptors has been found to have neuroprotective effects, making them interesting therapeutic targets for neurodegenerative disorders such as Alzheimer's Disease (AD). The Asian brown seaweed Sargassum fusiforme contains both LXR-activating (oxy)phytosterols and PPAR-activating fatty acids. We have previously shown that dietary supplementation with lipid extracts of Sargassum fusiforme prevents disease progression in a mouse model of AD, without inducing adverse effects associated with synthetic pan-LXR agonists. We now determined the LXRα/ß- and PPARα/γ-activating capacity of lipid extracts of six European brown seaweed species (Alaria esculenta, Ascophyllum nodosum, Fucus vesiculosus, Himanthalia elongata, Saccharina latissima, and Sargassum muticum) and the Asian seaweed Sargassum fusiforme using a dual luciferase reporter assay. We analyzed the sterol and fatty acid profiles of the extracts by GC-MS and UPLC MS/MS, respectively, and determined their effects on the expression of LXR and PPAR target genes in several cell lines using quantitative PCR. All extracts were found to activate LXRs, with the Himanthalia elongata extract showing the most pronounced efficacy, comparable to Sargassum fusiforme, for LXR activation and transcriptional regulation of LXR-target genes. Extracts of Alaria esculenta, Fucus vesiculosus, and Saccharina latissima showed the highest capacity to activate PPARα, while extracts of Alaria esculenta, Ascophyllum nodosum, Fucus vesiculosus, and Sargassum muticum showed the highest capacity to activate PPARγ, comparable to Sargassum fusiforme extract. In CCF-STTG1 astrocytoma cells, all extracts induced expression of cholesterol efflux genes (ABCG1, ABCA1, and APOE) and suppressed expression of cholesterol and fatty acid synthesis genes (DHCR7, DHCR24, HMGCR and SREBF2, and SREBF1, ACACA, SCD1 and FASN, respectively). Our data show that lipophilic fractions of European brown seaweeds activate LXRs and PPARs and thereby modulate lipid metabolism. These results support the potential of brown seaweeds in the prevention and/or treatment of neurodegenerative diseases and possibly cardiometabolic and inflammatory diseases via concurrent activation of LXRs and PPARs.


Subject(s)
Alzheimer Disease , Seaweed , Mice , Animals , Liver X Receptors/genetics , Liver X Receptors/metabolism , Alzheimer Disease/drug therapy , PPAR alpha/genetics , Tandem Mass Spectrometry , Receptors, Cytoplasmic and Nuclear/genetics , Cholesterol/metabolism , Fatty Acids/metabolism
17.
Cell Mol Life Sci ; 80(7): 178, 2023 Jun 12.
Article in English | MEDLINE | ID: mdl-37306762

ABSTRACT

Inhibition of phosphodiesterase 4D (PDE4D) enzymes has been investigated as therapeutic strategy to treat memory problems in Alzheimer's disease (AD). Although PDE4D inhibitors are effective in enhancing memory processes in rodents and humans, severe side effects may hamper their clinical use. PDE4D enzymes comprise different isoforms, which, when targeted specifically, can increase treatment efficacy and safety. The function of PDE4D isoforms in AD and in molecular memory processes per se has remained unresolved. Here, we report the upregulation of specific PDE4D isoforms in transgenic AD mice and hippocampal neurons exposed to amyloid-ß. Furthermore, by means of pharmacological inhibition and CRISPR-Cas9 knockdown, we show that the long-form PDE4D3, -D5, -D7, and -D9 isoforms regulate neuronal plasticity and convey resilience against amyloid-ß in vitro. These results indicate that isoform-specific, next to non-selective, PDE4D inhibition is efficient in promoting neuroplasticity in an AD context. Therapeutic effects of non-selective PDE4D inhibitors are likely achieved through actions on long isoforms. Future research should identify which long PDE4D isoforms should be specifically targeted in vivo to both improve treatment efficacy and reduce side effects.


Subject(s)
Alzheimer Disease , Phosphoric Diester Hydrolases , Humans , Animals , Mice , Neurites , Amyloid beta-Peptides , Neurons , Mice, Transgenic , Cyclic Nucleotide Phosphodiesterases, Type 4
18.
Acta Neuropathol ; 146(2): 283-299, 2023 08.
Article in English | MEDLINE | ID: mdl-37286732

ABSTRACT

In the progressive phase of multiple sclerosis (MS), the hampered differentiation capacity of oligodendrocyte precursor cells (OPCs) eventually results in remyelination failure. We have previously shown that DNA methylation of Id2/Id4 is highly involved in OPC differentiation and remyelination. In this study, we took an unbiased approach by determining genome-wide DNA methylation patterns within chronically demyelinated MS lesions and investigated how certain epigenetic signatures relate to OPC differentiation capacity. We compared genome-wide DNA methylation and transcriptional profiles between chronically demyelinated MS lesions and matched normal-appearing white matter (NAWM), making use of post-mortem brain tissue (n = 9/group). DNA methylation differences that inversely correlated with mRNA expression of their corresponding genes were validated for their cell-type specificity in laser-captured OPCs using pyrosequencing. The CRISPR-dCas9-DNMT3a/TET1 system was used to epigenetically edit human-iPSC-derived oligodendrocytes to assess the effect on cellular differentiation. Our data show hypermethylation of CpGs within genes that cluster in gene ontologies related to myelination and axon ensheathment. Cell type-specific validation indicates a region-dependent hypermethylation of MBP, encoding for myelin basic protein, in OPCs obtained from white matter lesions compared to NAWM-derived OPCs. By altering the DNA methylation state of specific CpGs within the promotor region of MBP, using epigenetic editing, we show that cellular differentiation and myelination can be bidirectionally manipulated using the CRISPR-dCas9-DNMT3a/TET1 system in vitro. Our data indicate that OPCs within chronically demyelinated MS lesions acquire an inhibitory phenotype, which translates into hypermethylation of crucial myelination-related genes. Altering the epigenetic status of MBP can restore the differentiation capacity of OPCs and possibly boost (re)myelination.


Subject(s)
Multiple Sclerosis , Humans , Multiple Sclerosis/pathology , Epigenomics , Transcriptome , Oligodendroglia/metabolism , Cell Differentiation , DNA Methylation , Myelin Sheath/pathology , Mixed Function Oxygenases/metabolism , Mixed Function Oxygenases/pharmacology , Proto-Oncogene Proteins
19.
FASEB J ; 37(6): e22939, 2023 06.
Article in English | MEDLINE | ID: mdl-37130013

ABSTRACT

Traumatic spinal cord injury (SCI) most often leads to permanent paralysis due to the inability of axons to regenerate in the adult mammalian central nervous system (CNS). In the past, we have shown that mast cells (MCs) improve the functional outcome after SCI by suppressing scar tissue formation at the lesion site via mouse mast cell protease 6 (mMCP6). In this study, we investigated whether recombinant mMCP6 can be used therapeutically to improve the functional outcome after SCI. Therefore, we applied mMCP6 locally via an intrathecal catheter in the subacute phase after a spinal cord hemisection injury in mice. Our findings showed that hind limb motor function was significantly improved in mice that received recombinant mMCP6 compared with the vehicle-treated group. In contrast to our previous findings in mMCP6 knockout mice, the lesion size and expression levels of the scar components fibronectin, laminin, and axon-growth-inhibitory chondroitin sulfate proteoglycans were not affected by the treatment with recombinant mMCP6. Surprisingly, no difference in infiltration of CD4+ T cells and reactivity of Iba-1+ microglia/macrophages at the lesion site was observed between the mMCP6-treated mice and control mice. Additionally, local protein levels of the pro- and anti-inflammatory mediators IL-1ß, IL-2, IL-4, IL-6, IL-10, TNF-α, IFNγ, and MCP-1 were comparable between the two treatment groups, indicating that locally applied mMCP6 did not affect inflammatory processes after injury. However, the increase in locomotor performance in mMCP6-treated mice was accompanied by reduced demyelination and astrogliosis in the perilesional area after SCI. Consistently, we found that TNF-α/IL-1ß-astrocyte activation was decreased and that oligodendrocyte precursor cell (OPC) differentiation was increased after recombinant mMCP6 treatment in vitro. Mechanistically, this suggests effects of mMCP6 on reducing astrogliosis and improving (re)myelination in the spinal cord after injury. In conclusion, these data show for the first time that recombinant mMCP6 is therapeutically active in enhancing recovery after SCI.


Subject(s)
Remyelination , Spinal Cord Injuries , Mice , Animals , Gliosis/drug therapy , Gliosis/metabolism , Cicatrix/drug therapy , Cicatrix/prevention & control , Mast Cells/metabolism , Tumor Necrosis Factor-alpha/metabolism , Spinal Cord Injuries/drug therapy , Spinal Cord Injuries/metabolism , Spinal Cord/metabolism , Mice, Knockout , Recovery of Function , Disease Models, Animal , Mammals
20.
Int J Mol Sci ; 24(9)2023 May 02.
Article in English | MEDLINE | ID: mdl-37175842

ABSTRACT

Traumatic spinal cord injury (SCI) is characterized by severe neuroinflammation and hampered neuroregeneration, which often leads to permanent neurological deficits. Current therapies include decompression surgery, rehabilitation, and in some instances, the use of corticosteroids. However, the golden standard of corticosteroids still achieves minimal improvements in functional outcomes. Therefore, new strategies tackling the initial inflammatory reactions and stimulating endogenous repair in later stages are crucial to achieving functional repair in SCI patients. Cyclic adenosine monophosphate (cAMP) is an important second messenger in the central nervous system (CNS) that modulates these processes. A sustained drop in cAMP levels is observed during SCI, and elevating cAMP is associated with improved functional outcomes in experimental models. cAMP is regulated in a spatiotemporal manner by its hydrolyzing enzyme phosphodiesterase (PDE). Growing evidence suggests that inhibition of cAMP-specific PDEs (PDE4, PDE7, and PDE8) is an important strategy to orchestrate neuroinflammation and regeneration in the CNS. Therefore, this review focuses on the current evidence related to the immunomodulatory and neuroregenerative role of cAMP-specific PDE inhibition in the SCI pathophysiology.


Subject(s)
Spinal Cord Injuries , Spinal Cord Regeneration , Humans , Phosphoric Diester Hydrolases , Neuroinflammatory Diseases , Spinal Cord Injuries/drug therapy , Cyclic Nucleotide Phosphodiesterases, Type 7 , Cyclic AMP , Spinal Cord
SELECTION OF CITATIONS
SEARCH DETAIL