Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Cell ; 185(2): 379-396.e38, 2022 01 20.
Article in English | MEDLINE | ID: mdl-35021063

ABSTRACT

The liver is the largest solid organ in the body, yet it remains incompletely characterized. Here we present a spatial proteogenomic atlas of the healthy and obese human and murine liver combining single-cell CITE-seq, single-nuclei sequencing, spatial transcriptomics, and spatial proteomics. By integrating these multi-omic datasets, we provide validated strategies to reliably discriminate and localize all hepatic cells, including a population of lipid-associated macrophages (LAMs) at the bile ducts. We then align this atlas across seven species, revealing the conserved program of bona fide Kupffer cells and LAMs. We also uncover the respective spatially resolved cellular niches of these macrophages and the microenvironmental circuits driving their unique transcriptomic identities. We demonstrate that LAMs are induced by local lipid exposure, leading to their induction in steatotic regions of the murine and human liver, while Kupffer cell development crucially depends on their cross-talk with hepatic stellate cells via the evolutionarily conserved ALK1-BMP9/10 axis.


Subject(s)
Biological Evolution , Hepatocytes/metabolism , Macrophages/metabolism , Proteogenomics , Animals , Cell Nucleus/metabolism , Fatty Liver/genetics , Fatty Liver/pathology , Homeostasis , Humans , Kupffer Cells/metabolism , Leukocyte Common Antigens/metabolism , Lipids/chemistry , Liver/metabolism , Lymphocytes/metabolism , Mice, Inbred C57BL , Models, Biological , Myeloid Cells/metabolism , Obesity/pathology , Proteome/metabolism , Signal Transduction , Transcriptome/genetics
2.
Immunity ; 53(3): 641-657.e14, 2020 09 15.
Article in English | MEDLINE | ID: mdl-32888418

ABSTRACT

Metabolic-associated fatty liver disease (MAFLD) represents a spectrum of disease states ranging from simple steatosis to non-alcoholic steatohepatitis (NASH). Hepatic macrophages, specifically Kupffer cells (KCs), are suggested to play important roles in the pathogenesis of MAFLD through their activation, although the exact roles played by these cells remain unclear. Here, we demonstrated that KCs were reduced in MAFLD being replaced by macrophages originating from the bone marrow. Recruited macrophages existed in two subsets with distinct activation states, either closely resembling homeostatic KCs or lipid-associated macrophages (LAMs) from obese adipose tissue. Hepatic LAMs expressed Osteopontin, a biomarker for patients with NASH, linked with the development of fibrosis. Fitting with this, LAMs were found in regions of the liver with reduced numbers of KCs, characterized by increased Desmin expression. Together, our data highlight considerable heterogeneity within the macrophage pool and suggest a need for more specific macrophage targeting strategies in MAFLD.


Subject(s)
Bone Marrow Cells/cytology , Macrophage Activation/immunology , Macrophages/metabolism , Non-alcoholic Fatty Liver Disease/pathology , Osteopontin/metabolism , Animals , Biomarkers/metabolism , Cells, Cultured , Desmin/metabolism , Female , Kupffer Cells/cytology , Liver/pathology , Male , Mice , Mice, Inbred C57BL , Proteome/metabolism , Transcriptome/genetics
3.
Immunity ; 51(4): 638-654.e9, 2019 10 15.
Article in English | MEDLINE | ID: mdl-31561945

ABSTRACT

Macrophages are strongly adapted to their tissue of residence. Yet, little is known about the cell-cell interactions that imprint the tissue-specific identities of macrophages in their respective niches. Using conditional depletion of liver Kupffer cells, we traced the developmental stages of monocytes differentiating into Kupffer cells and mapped the cellular interactions imprinting the Kupffer cell identity. Kupffer cell loss induced tumor necrosis factor (TNF)- and interleukin-1 (IL-1) receptor-dependent activation of stellate cells and endothelial cells, resulting in the transient production of chemokines and adhesion molecules orchestrating monocyte engraftment. Engrafted circulating monocytes transmigrated into the perisinusoidal space and acquired the liver-associated transcription factors inhibitor of DNA 3 (ID3) and liver X receptor-α (LXR-α). Coordinated interactions with hepatocytes induced ID3 expression, whereas endothelial cells and stellate cells induced LXR-α via a synergistic NOTCH-BMP pathway. This study shows that the Kupffer cell niche is composed of stellate cells, hepatocytes, and endothelial cells that together imprint the liver-specific macrophage identity.


Subject(s)
Endothelial Cells/physiology , Hepatic Stellate Cells/physiology , Hepatocytes/physiology , Kupffer Cells/physiology , Liver/cytology , Macrophages/physiology , Monocytes/physiology , Animals , Cell Communication , Cell Differentiation , Cells, Cultured , Cellular Microenvironment , Female , Gene Expression Regulation , Inhibitor of Differentiation Proteins/genetics , Inhibitor of Differentiation Proteins/metabolism , Liver X Receptors/genetics , Liver X Receptors/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Receptors, Notch/metabolism
4.
Immunity ; 49(2): 312-325.e5, 2018 08 21.
Article in English | MEDLINE | ID: mdl-30076102

ABSTRACT

Heterogeneity between different macrophage populations has become a defining feature of this lineage. However, the conserved factors defining macrophages remain largely unknown. The transcription factor ZEB2 is best described for its role in epithelial to mesenchymal transition; however, its role within the immune system is only now being elucidated. We show here that Zeb2 expression is a conserved feature of macrophages. Using Clec4f-cre, Itgax-cre, and Fcgr1-cre mice to target five different macrophage populations, we found that loss of ZEB2 resulted in macrophage disappearance from the tissues, coupled with their subsequent replenishment from bone-marrow precursors in open niches. Mechanistically, we found that ZEB2 functioned to maintain the tissue-specific identities of macrophages. In Kupffer cells, ZEB2 achieved this by regulating expression of the transcription factor LXRα, removal of which recapitulated the loss of Kupffer cell identity and disappearance. Thus, ZEB2 expression is required in macrophages to preserve their tissue-specific identities.


Subject(s)
Kupffer Cells/cytology , Liver X Receptors/genetics , Zinc Finger E-box Binding Homeobox 2/genetics , Animals , Cell Lineage/immunology , Epithelial-Mesenchymal Transition , Female , Gene Expression Regulation, Neoplastic , Kupffer Cells/immunology , Liver/cytology , Liver X Receptors/metabolism , Lung/cytology , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic
SELECTION OF CITATIONS
SEARCH DETAIL
...