Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Front Pharmacol ; 13: 906173, 2022.
Article in English | MEDLINE | ID: mdl-35784739

ABSTRACT

Adipose tissue is a source of stem cells with a high potential of differentiation for cell-based regenerative therapies. We previously identified mouse P2Y2, an ATP and UTP nucleotide receptor, as a regulator of adipogenic and endothelial differentiation of cardiac adipose-derived stem cells (cADSC). We investigated here the potential involvement of P2Y2 receptor in the cardioprotective action of undifferentiated cADSC transplantation in mouse ischemic heart. Transplantation of cADSC was realized in the periphery of the infarcted zone of ischemic heart, 3 days after left anterior descending artery ligation. A strong reduction of collagen stained area was observed 14 days after cADSC injection, compared to PBS injection. Interestingly, loss of P2Y2 expression totally inhibits the ability of transplanted cADSC to reduce cardiac fibrosis. A detailed gene ontology enrichment analysis was realized by comparing RNA-sequencing data obtained for UTP-treated wild type cASDC and UTP-treated P2Y2-null cASDC. We identified UTP target genes linked to extracellular matrix organization such as matrix metalloproteinases and various collagen types, UTP target genes related to macrophage chemotaxis and differentiation into pro-fibrotic foam cells, and a significant number of UTP target genes linked to angiogenesis regulation. More particularly, we showed that UTP regulated the secretion of CCL5, CXCL5, and CCL12 chemokines and serum amyloid apolipoprotein 3, in the supernatants of UTP-treated cADSC. Interestingly, CCL5 is reported as a key factor in post-infarction heart failure and in the reparative and angiogenic action of transplanted ADSC on ischemic tissue. We investigated then if a UTP-pretreatment of cADSC amplifies their effect on cardiac revascularization in mouse ischemic heart. Transplantation of cADSC was able to increase peri-infarct capillary density, 14 days after their injection. This beneficial effect on cardiac revascularization was enhanced by a UTP-pretreatment of cADSC before their transplantation, and not observed using P2Y2-null cADSC. Our data support that the efficacy of transplanted cADSC can be regulated by the release of inflammatory mediators such as extracellular nucleotides in the ischemic site. The present study highlights the P2Y2 receptor as a regulator of cADSC cardioprotective action, and as a potential target for the therapeutic use of undifferentiated cADSC in post-ischemic cardiac ischemia.

2.
Purinergic Signal ; 17(4): 681-691, 2021 12.
Article in English | MEDLINE | ID: mdl-34351588

ABSTRACT

The ability of cardiac adipose-derived stem cells (cADSC) to differentiate into multiple cell types has opened new perspectives in cardiac cell-based regenerative therapies. P2Y nucleotide receptors have already been described as regulators of adipogenic differentiation of cADSC and bone marrow-derived stem cells. In this study, we defined UTP as a regulator of cADSC endothelial differentiation. A daily UTP stimulation of cADSC during endothelial predifferentiation increased their capacity to form an endothelial network in matrigel. Additionally, pro-angiogenic UTP target genes such as epiregulin and hyaluronan synthase-1 were identified in predifferentiated cADSC by RNA sequencing experiments. Their regulation by UTP was confirmed by qPCR and ELISA experiments. We then evaluated the capacity of UTP-treated predifferentiated cADSC to increase post-ischemic revascularization in mice subjected to left anterior descending artery ligation. Predifferentiated cADSC treated or not with UTP were injected in the periphery of the infarcted zone, 3 days after ligation. We observed a significant increase of capillary density 14 and 30 days after UTP-treated predifferentiated cADSC injection, correlated with a reduction of cardiac fibrosis. This revascularization increase was not observed after injection of UTP-treated cADSC deficient for UTP and ATP nucleotide receptor P2Y2. The present study highlights the P2Y2 receptor as a regulator of cADSC endothelial differentiation and as a potential target for the therapeutic use of cADSC in post-ischemic heart revascularization.


Subject(s)
Cell Differentiation/drug effects , Multipotent Stem Cells/drug effects , Neovascularization, Physiologic/drug effects , Uridine Triphosphate/pharmacology , Animals , Epiregulin/genetics , Epiregulin/metabolism , Mice , Mice, Knockout , Multipotent Stem Cells/metabolism , Receptors, Purinergic P2Y2/genetics , Receptors, Purinergic P2Y2/metabolism
3.
Stem Cells Dev ; 26(5): 363-373, 2017 03 01.
Article in English | MEDLINE | ID: mdl-27855539

ABSTRACT

Cardiac adipose tissue-derived stem cells (cASCs) have the ability to differentiate into multiple cell lineages giving them a high potential for use in regenerative medicine. Cardiac fat tissue still raises many unsolved questions related to its formation and features. P2Y nucleotide receptors have already been described as regulators of differentiation of bone-marrow derived stem cells, but remain poorly investigated in cASCs. We defined, in this study, the P2Y4 nucleotide receptor as a negative regulator of cardiac fat formation and cASC adipogenic differentiation. Higher expression of P2Y4 receptor in cardiac fat tissue was observed compared to other adipose tissues. P2Y4-null mice displayed a higher mass of cardiac adipose tissue specifically. We therefore examined the role of P2Y4 receptor in cASC adipogenic differentiation. An inhibitory effect of uridine 5'-triphosphate (UTP), ligand of P2Y4, was observed on the maturation state of differentiated cASCs, and on the expression of adipogenesis-linked genes and adiponectin, a cardioprotective adipokine. Higher adiponectin secretion by P2Y4-null adipocytes could be linked with cardioprotection previously observed in the heart of P2Y4-null ischemic mice. We realized here left anterior descending artery ligation on simple and double-knockout mice for P2Y4 and adiponectin. No cardioprotective effect of P2Y4 loss was observed in the absence of adiponectin secretion. In addition, P2Y4 loss was correlated with higher expression of UCP-1 (uncoupling protein-1) and CD137, two markers of brown/beige cardiac adipocytes. Our data highlight the P2Y4 receptor as an inhibitor of cardiac fat formation and cASC adipogenic differentiation, and as a potential therapeutic target in the regulation of cardioprotective function of cardiac fat.


Subject(s)
Adipose Tissue/cytology , Adiposity , Cell Differentiation , Myocardium/cytology , Receptors, Purinergic P2/metabolism , Stem Cells/cytology , Adipocytes/cytology , Adipocytes/drug effects , Adipocytes/metabolism , Adipogenesis/drug effects , Adiponectin/metabolism , Adiposity/drug effects , Animals , Biomarkers/metabolism , Cardiotonic Agents/pharmacology , Cell Differentiation/drug effects , Cell Hypoxia/drug effects , Female , Lipid Droplets/drug effects , Lipid Droplets/metabolism , Male , Mice, Inbred C57BL , Myocardial Infarction/pathology , Stem Cells/drug effects , Stem Cells/metabolism , Uridine Triphosphate/pharmacology
4.
J Biol Chem ; 291(30): 15841-52, 2016 07 22.
Article in English | MEDLINE | ID: mdl-27231349

ABSTRACT

The study of the mechanisms leading to cardiac hypertrophy is essential to better understand cardiac development and regeneration. Pathological conditions such as ischemia or pressure overload can induce a release of extracellular nucleotides within the heart. We recently investigated the potential role of nucleotide P2Y receptors in cardiac development. We showed that adult P2Y4-null mice displayed microcardia resulting from defective cardiac angiogenesis. Here we show that loss of another P2Y subtype called P2Y6, a UDP receptor, was associated with a macrocardia phenotype and amplified pathological cardiac hypertrophy. Cardiomyocyte proliferation and size were increased in vivo in hearts of P2Y6-null neonates, resulting in enhanced postnatal heart growth. We then observed that loss of P2Y6 receptor enhanced pathological cardiac hypertrophy induced after isoproterenol injection. We identified an inhibitory effect of UDP on in vitro isoproterenol-induced cardiomyocyte hyperplasia and hypertrophy. The present study identifies mouse P2Y6 receptor as a regulator of cardiac development and cardiomyocyte function. P2Y6 receptor could constitute a therapeutic target to regulate cardiac hypertrophy.


Subject(s)
Cardiomegaly/metabolism , Myocardial Ischemia/metabolism , Myocytes, Cardiac/metabolism , Receptors, Purinergic P2/metabolism , Animals , Cardiomegaly/chemically induced , Cardiomegaly/genetics , Cardiomegaly/pathology , Hyperplasia , Isoproterenol/adverse effects , Isoproterenol/pharmacology , Male , Mice , Mice, Knockout , Myocardial Ischemia/chemically induced , Myocardial Ischemia/genetics , Myocardial Ischemia/pathology , Myocytes, Cardiac/pathology , Receptors, Purinergic P2/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...