Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
2.
Brief Bioinform ; 23(4)2022 07 18.
Article in English | MEDLINE | ID: mdl-35804437

ABSTRACT

Current tailored-therapy efforts in cancer are largely focused on a small number of highly recurrently mutated driver genes but therapeutic targeting of these oncogenes remains challenging. However, the vast number of genes mutated infrequently across cancers has received less attention, in part, due to a lack of understanding of their biological significance. We present SYSMut, an extendable systems biology platform that can robustly infer the biologic consequences of somatic mutations by integrating routine multiomics profiles in primary tumors. We establish SYSMut's improved performance vis-à-vis state-of-the-art driver gene identification methodologies by recapitulating the functional impact of known driver genes, while additionally identifying novel functionally impactful mutated genes across 29 cancers. Subsequent application of SYSMut on low-frequency gene mutations in head and neck squamous cell (HNSC) cancers, followed by molecular and pharmacogenetic validation, revealed the lipidogenic network as a novel therapeutic vulnerability in aggressive HNSC cancers. SYSMut is thus a robust scalable framework that enables the discovery of new targetable avenues in cancer.


Subject(s)
Neoplasms , Humans , Mutation , Neoplasms/genetics , Oncogenes , Systems Biology
3.
Gastroenterology ; 163(5): 1228-1241, 2022 11.
Article in English | MEDLINE | ID: mdl-35870513

ABSTRACT

BACKGROUND & AIMS: Mechanisms contributing to the onset and progression of Barrett's (BE)-associated esophageal adenocarcinoma (EAC) remain elusive. Here, we interrogated the major signaling pathways deregulated early in the development of Barrett's neoplasia. METHODS: Whole-transcriptome RNA sequencing analysis was performed in primary BE, EAC, normal esophageal squamous, and gastric biopsy tissues (n = 89). Select pathway components were confirmed by quantitative polymerase chain reaction in an independent cohort of premalignant and malignant biopsy tissues (n = 885). Functional impact of selected pathway was interrogated using transcriptomic, proteomic, and pharmacogenetic analyses in mammalian esophageal organotypic and patient-derived BE/EAC cell line models, in vitro and/or in vivo. RESULTS: The vast majority of primary BE/EAC tissues and cell line models showed hyperactivation of EphB2 signaling. Transcriptomic/proteomic analyses identified EphB2 as an endogenous binding partner of MYC binding protein 2, and an upstream regulator of c-MYC. Knockdown of EphB2 significantly impeded the viability/proliferation of EAC and BE cells in vitro/in vivo. Activation of EphB2 in normal esophageal squamous 3-dimensional organotypes disrupted epithelial maturation and promoted columnar differentiation programs, notably including MYC. EphB2 and MYC showed selective induction in esophageal submucosal glands with acinar ductal metaplasia, and in a porcine model of BE-like esophageal submucosal gland spheroids. Clinically approved inhibitors of MEK, a protein kinase that regulates MYC, effectively suppressed EAC tumor growth in vivo. CONCLUSIONS: The EphB2 signaling is frequently hyperactivated across the BE-EAC continuum. EphB2 is an upstream regulator of MYC, and activation of EphB2-MYC axis likely precedes BE development. Targeting EphB2/MYC could be a promising therapeutic strategy for this often refractory and aggressive cancer.


Subject(s)
Barrett Esophagus , Carcinoma, Squamous Cell , Esophageal Neoplasms , Swine , Animals , Barrett Esophagus/pathology , Ephrin-B2/genetics , Proteomics , Esophageal Neoplasms/pathology , Carcinoma, Squamous Cell/pathology , Proto-Oncogenes , Protein-Tyrosine Kinases/genetics , Mitogen-Activated Protein Kinase Kinases/genetics , Mammals/genetics
4.
Proc Natl Acad Sci U S A ; 119(21): e2114324119, 2022 05 24.
Article in English | MEDLINE | ID: mdl-35584120

ABSTRACT

Antiandrogen strategies remain the prostate cancer treatment backbone, but drug resistance develops. We show that androgen blockade in prostate cancer leads to derepression of retroelements (REs) followed by a double-stranded RNA (dsRNA)-stimulated interferon response that blocks tumor growth. A forward genetic approach identified H3K9 trimethylation (H3K9me3) as an essential epigenetic adaptation to antiandrogens, which enabled transcriptional silencing of REs that otherwise stimulate interferon signaling and glucocorticoid receptor expression. Elevated expression of terminal H3K9me3 writers was associated with poor patient hormonal therapy outcomes. Forced expression of H3K9me3 writers conferred resistance, whereas inhibiting H3K9-trimethylation writers and readers restored RE expression, blocking antiandrogen resistance. Our work reveals a drug resistance axis that integrates multiple cellular signaling elements and identifies potential pharmacologic vulnerabilities.


Subject(s)
Androgen Receptor Antagonists , Prostatic Neoplasms, Castration-Resistant , Androgen Antagonists/pharmacology , Androgen Antagonists/therapeutic use , Androgen Receptor Antagonists/pharmacology , Androgens/pharmacology , DNA Methylation , Drug Resistance, Neoplasm , Gene Silencing , Humans , Interferons , Male , Methylation , Nitriles/therapeutic use , Prostatic Neoplasms, Castration-Resistant/pathology , Receptors, Androgen/genetics , Receptors, Androgen/metabolism
5.
Clin Cancer Res ; 28(5): 984-992, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-34785584

ABSTRACT

PURPOSE: VSIR is a novel immune checkpoint protein whose expression on tumor cells across cancers remains largely uncharacterized. Here we purposed to decode the pan-cancer biologic and clinical significance of VSIR overexpression in the tumor compartment. EXPERIMENTAL DESIGN: We performed multi-omics integrative analyses of 9,735 tumor samples to identify cancers with non-leukocytic expression of VSIR (VSIR High), followed by association with overall survival and immune cell infiltration levels. Orthogonal assessments of VSIR protein expression and lymphocytic infiltration were performed using quantitative immunofluorescence (QIF). RESULTS: Integrative modeling identified a subset of cancer types as being enriched for VSIR High tumors. VSIR High tumors were associated with significantly poorer overall survival in immunogenic ovarian serous adenocarcinoma (SA) and oral cavity squamous cell carcinoma (SCC). QIF assessments in an independent validation cohort confirmed overexpression of VSIR as being associated with poorer overall survival within immunogenic oral cavity SCC. VSIR overexpression was associated with lower CD4 helper T-cell infiltration in both ovarian SA and oral cavity SCC, but did not impact CD8 T-cell infiltration. VSIR overexpressing tumors in both cancer types exhibited significantly higher STAT3 signaling activity. Pharmacologic inhibition of STAT3 signaling resulted in dose-dependent reduction of VSIR expression in ovarian SA and oral cavity SCC cells. CONCLUSIONS: The STAT3-VSIR axis is a potentially significant immunomodulatory mechanism in oral cavity and ovarian cancers, whose activation is associated with poorer survival and an immune microenvironment marked by decreased CD4 helper T-cell activity. The role of VSIR as a tumor-intrinsic modulator of resistance to immunotherapy warrants further exploration.


Subject(s)
Carcinoma, Squamous Cell , Cystadenocarcinoma, Serous , Head and Neck Neoplasms , CD8-Positive T-Lymphocytes , Head and Neck Neoplasms/genetics , Humans , Immunotherapy , STAT3 Transcription Factor/genetics , Squamous Cell Carcinoma of Head and Neck , Tumor Microenvironment/genetics
6.
Nat Commun ; 12(1): 4867, 2021 08 11.
Article in English | MEDLINE | ID: mdl-34381029

ABSTRACT

Circulating tumor cell (CTC) clusters mediate metastasis at a higher efficiency and are associated with lower overall survival in breast cancer compared to single cells. Combining single-cell RNA sequencing and protein analyses, here we report the profiles of primary tumor cells and lung metastases of triple-negative breast cancer (TNBC). ICAM1 expression increases by 200-fold in the lung metastases of three TNBC patient-derived xenografts (PDXs). Depletion of ICAM1 abrogates lung colonization of TNBC cells by inhibiting homotypic tumor cell-tumor cell cluster formation. Machine learning-based algorithms and mutagenesis analyses identify ICAM1 regions responsible for homophilic ICAM1-ICAM1 interactions, thereby directing homotypic tumor cell clustering, as well as heterotypic tumor-endothelial adhesion for trans-endothelial migration. Moreover, ICAM1 promotes metastasis by activating cellular pathways related to cell cycle and stemness. Finally, blocking ICAM1 interactions significantly inhibits CTC cluster formation, tumor cell transendothelial migration, and lung metastasis. Therefore, ICAM1 can serve as a novel therapeutic target for metastasis initiation of TNBC.


Subject(s)
Intercellular Adhesion Molecule-1/metabolism , Lung Neoplasms/secondary , Neoplastic Cells, Circulating/pathology , Triple Negative Breast Neoplasms/pathology , Animals , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Cell Aggregation , Cell Cycle , Cell Transformation, Neoplastic , Humans , Intercellular Adhesion Molecule-1/genetics , Lung Neoplasms/metabolism , Mice , Neoplastic Cells, Circulating/metabolism , Protein Interaction Domains and Motifs , Signal Transduction , Transendothelial and Transepithelial Migration , Triple Negative Breast Neoplasms/metabolism
7.
Neuro Oncol ; 23(2): 251-263, 2021 02 25.
Article in English | MEDLINE | ID: mdl-33068415

ABSTRACT

BACKGROUND: Recent epidemiological studies have suggested that sexual dimorphism influences treatment response and prognostic outcome in glioblastoma (GBM). To this end, we sought to (i) identify distinct sex-specific radiomic phenotypes-from tumor subcompartments (peritumoral edema, enhancing tumor, and necrotic core) using pretreatment MRI scans-that are prognostic of overall survival (OS) in GBMs, and (ii) investigate radiogenomic associations of the MRI-based phenotypes with corresponding transcriptomic data, to identify the signaling pathways that drive sex-specific tumor biology and treatment response in GBM. METHODS: In a retrospective setting, 313 GBM patients (male = 196, female = 117) were curated from multiple institutions for radiomic analysis, where 130 were used for training and independently validated on a cohort of 183 patients. For the radiogenomic analysis, 147 GBM patients (male = 94, female = 53) were used, with 125 patients in training and 22 cases for independent validation. RESULTS: Cox regression models of radiomic features from gadolinium T1-weighted MRI allowed for developing more precise prognostic models, when trained separately on male and female cohorts. Our radiogenomic analysis revealed higher expression of Laws energy features that capture spots and ripple-like patterns (representative of increased heterogeneity) from the enhancing tumor region, as well as aggressive biological processes of cell adhesion and angiogenesis to be more enriched in the "high-risk" group of poor OS in the male population. In contrast, higher expressions of Laws energy features (which detect levels and edges) from the necrotic core with significant involvement of immune related signaling pathways was observed in the "low-risk" group of the female population. CONCLUSIONS: Sexually dimorphic radiogenomic models could help risk-stratify GBM patients for personalized treatment decisions.


Subject(s)
Brain Neoplasms , Glioblastoma , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/genetics , Female , Glioblastoma/diagnostic imaging , Glioblastoma/genetics , Humans , Magnetic Resonance Imaging , Male , Prognosis , Retrospective Studies
8.
Ann Transl Med ; 8(14): 906, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32793750

ABSTRACT

Despite convergence of overall breast cancer incidence rates between European American (EA) and African American (AA) women, disparities in mortality persist. The factors contributing to differences in mortality rates across population groups remain controversial and range from population genetics to sociodemographic influences. This review explores the complex multi-factorial nature of tumor-intrinsic and -extrinsic factors that impact the biology and clinical outcomes of breast cancer patients. In addition to summarizing the current state of breast cancer disparities research, we also motivate the development of integrative multi-scale approaches involving interdisciplinary teams to tackle this complex clinical challenge.

9.
J Biol Chem ; 295(33): 11707-11719, 2020 08 14.
Article in English | MEDLINE | ID: mdl-32576660

ABSTRACT

The phenotypes of each breast cancer subtype are defined by their transcriptomes. However, the transcription factors that regulate differential patterns of gene expression that contribute to specific disease outcomes are not well understood. Here, using gene silencing and overexpression approaches, RNA-Seq, and splicing analysis, we report that the transcription factor B-cell leukemia/lymphoma 11A (BCL11A) is highly expressed in triple-negative breast cancer (TNBC) and drives metastatic disease. Moreover, BCL11A promotes cancer cell invasion by suppressing the expression of muscleblind-like splicing regulator 1 (MBNL1), a splicing regulator that suppresses metastasis. This ultimately increases the levels of an alternatively spliced isoform of integrin-α6 (ITGA6), which is associated with worse patient outcomes. These results suggest that BCL11A sustains TNBC cell invasion and metastatic growth by repressing MBNL1-directed splicing of ITGA6 Our findings also indicate that BCL11A lies at the interface of transcription and splicing and promotes aggressive TNBC phenotypes.


Subject(s)
Gene Expression Regulation, Neoplastic , Neoplasm Invasiveness/genetics , Repressor Proteins/genetics , Triple Negative Breast Neoplasms/genetics , Up-Regulation , Cell Line, Tumor , Disease Progression , Female , Humans , Neoplasm Invasiveness/pathology , Neoplasm Metastasis/genetics , Neoplasm Metastasis/pathology , Triple Negative Breast Neoplasms/pathology
10.
Elife ; 92020 05 13.
Article in English | MEDLINE | ID: mdl-32401198

ABSTRACT

Copy number alterations (CNAs) play an important role in molding the genomes of breast cancers and have been shown to be clinically useful for prognostic and therapeutic purposes. However, our knowledge of intra-tumoral genetic heterogeneity of this important class of somatic alterations is limited. Here, using single-cell sequencing, we comprehensively map out the facets of copy number alteration heterogeneity in a cohort of breast cancer tumors. Ou/var/www/html/elife/12-05-2020/backup/r analyses reveal: genetic heterogeneity of non-tumor cells (i.e. stroma) within the tumor mass; the extent to which copy number heterogeneity impacts breast cancer genomes and the importance of both the genomic location and dosage of sub-clonal events; the pervasive nature of genetic heterogeneity of chromosomal amplifications; and the association of copy number heterogeneity with clinical and biological parameters such as polyploidy and estrogen receptor negative status. Our data highlight the power of single-cell genomics in dissecting, in its many forms, intra-tumoral genetic heterogeneity of CNAs, the magnitude with which CNA heterogeneity affects the genomes of breast cancers, and the potential importance of CNA heterogeneity in phenomena such as therapeutic resistance and disease relapse.


Cells in the body remain healthy by tightly preventing and repairing random changes, or mutations, in their genetic material. In cancer cells, however, these mechanisms can break down. When these cells grow and multiply, they can then go on to accumulate many mutations. As a result, cancer cells in the same tumor can each contain a unique combination of genetic changes. This genetic heterogeneity has the potential to affect how cancer responds to treatment, and is increasingly becoming appreciated clinically. For example, if a drug only works against cancer cells carrying a specific mutation, any cells lacking this genetic change will keep growing and cause a relapse. However, it is still difficult to quantify and understand genetic heterogeneity in cancer. Copy number alterations (or CNAs) are a class of mutation where large and small sections of genetic material are gained or lost. This can result in cells that have an abnormal number of copies of the genes in these sections. Here, Baslan et al. set out to explore how CNAs might vary between individual cancer cells within the same tumor. To do so, thousands of individual cancer cells were isolated from human breast tumors, and a technique called single-cell genome sequencing used to screen the genetic information of each of them. These experiments confirmed that CNAs did differ ­ sometimes dramatically ­ between patients and among cells taken from the same tumor. For example, many of the cells carried extra copies of well-known cancer genes important for treatment, but the exact number of copies varied between cells. This heterogeneity existed for individual genes as well as larger stretches of DNA: this was the case, for instance, for an entire section of chromosome 8, a region often affected in breast and other tumors. The work by Baslan et al. captures the sheer extent of genetic heterogeneity in cancer and in doing so, highlights the power of single-cell genome sequencing. In the future, a finer understanding of the genetic changes present at the level of an individual cancer cell may help clinicians to manage the disease more effectively.


Subject(s)
Biomarkers, Tumor/genetics , Breast Neoplasms/genetics , DNA Copy Number Variations , Gene Dosage , Genetic Heterogeneity , Genomics , Single-Cell Analysis , Whole Genome Sequencing , Breast Neoplasms/mortality , Breast Neoplasms/pathology , Breast Neoplasms/therapy , Clinical Trials, Phase II as Topic , Female , Genetic Predisposition to Disease , Humans , Phenotype , Prognosis , RNA-Seq
11.
Cancer Res ; 80(8): 1693-1706, 2020 04 15.
Article in English | MEDLINE | ID: mdl-32054769

ABSTRACT

A significant therapeutic challenge for patients with cancer is resistance to chemotherapies such as taxanes. Overexpression of LIN9, a transcriptional regulator of cell-cycle progression, occurs in 65% of patients with triple-negative breast cancer (TNBC), a disease commonly treated with these drugs. Here, we report that LIN9 is further elevated with acquisition of taxane resistance. Inhibiting LIN9 genetically or by suppressing its expression with a global BET inhibitor restored taxane sensitivity by inducing mitotic progression errors and apoptosis. While sustained LIN9 is necessary to maintain taxane resistance, there are no inhibitors that directly repress its function. Hence, we sought to discover a druggable downstream transcriptional target of LIN9. Using a computational approach, we identified NIMA-related kinase 2 (NEK2), a regulator of centrosome separation that is also elevated in taxane-resistant cells. High expression of NEK2 was predictive of low survival rates in patients who had residual disease following treatment with taxanes plus an anthracycline, suggesting a role for this kinase in modulating taxane sensitivity. Like LIN9, genetic or pharmacologic blockade of NEK2 activity in the presence of paclitaxel synergistically induced mitotic abnormalities in nearly 100% of cells and completely restored sensitivity to paclitaxel, in vitro. In addition, suppressing NEK2 activity with two distinct small molecules potentiated taxane response in multiple in vivo models of TNBC, including a patient-derived xenograft, without inducing toxicity. These data demonstrate that the LIN9/NEK2 pathway is a therapeutically targetable mediator of taxane resistance that can be leveraged to improve response to this core chemotherapy. SIGNIFICANCE: Resistance to chemotherapy is a major hurdle for treating patients with cancer. Combining NEK2 inhibitors with taxanes may be a viable approach for improving patient outcomes by enhancing mitotic defects induced by taxanes alone.


Subject(s)
Drug Resistance, Neoplasm/drug effects , Mitosis/drug effects , NIMA-Related Kinases/antagonists & inhibitors , Nuclear Proteins/antagonists & inhibitors , Paclitaxel/pharmacology , Taxoids/pharmacology , Triple Negative Breast Neoplasms/drug therapy , Tumor Suppressor Proteins/antagonists & inhibitors , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/pharmacology , Apoptosis , Cell Line, Tumor , Cellular Senescence , Centrosome/enzymology , Female , Gene Expression Regulation, Neoplastic , Gene Silencing , Heterografts , Humans , Mitosis/genetics , NIMA-Related Kinases/metabolism , Neoplasm Proteins/antagonists & inhibitors , Neoplasm Proteins/metabolism , Nuclear Proteins/metabolism , Paclitaxel/administration & dosage , Survival Rate , Taxoids/administration & dosage , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/mortality , Tumor Stem Cell Assay , Tumor Suppressor Proteins/metabolism , Up-Regulation
12.
Clin Cancer Res ; 26(8): 1866-1876, 2020 04 15.
Article in English | MEDLINE | ID: mdl-32079590

ABSTRACT

PURPOSE: To (i) create a survival risk score using radiomic features from the tumor habitat on routine MRI to predict progression-free survival (PFS) in glioblastoma and (ii) obtain a biological basis for these prognostic radiomic features, by studying their radiogenomic associations with molecular signaling pathways. EXPERIMENTAL DESIGN: Two hundred three patients with pretreatment Gd-T1w, T2w, T2w-FLAIR MRI were obtained from 3 cohorts: The Cancer Imaging Archive (TCIA; n = 130), Ivy GAP (n = 32), and Cleveland Clinic (n = 41). Gene-expression profiles of corresponding patients were obtained for TCIA cohort. For every study, following expert segmentation of tumor subcompartments (necrotic core, enhancing tumor, peritumoral edema), 936 3D radiomic features were extracted from each subcompartment across all MRI protocols. Using Cox regression model, radiomic risk score (RRS) was developed for every protocol to predict PFS on the training cohort (n = 130) and evaluated on the holdout cohort (n = 73). Further, Gene Ontology and single-sample gene set enrichment analysis were used to identify specific molecular signaling pathway networks associated with RRS features. RESULTS: Twenty-five radiomic features from the tumor habitat yielded the RRS. A combination of RRS with clinical (age and gender) and molecular features (MGMT and IDH status) resulted in a concordance index of 0.81 (P < 0.0001) on training and 0.84 (P = 0.03) on the test set. Radiogenomic analysis revealed associations of RRS features with signaling pathways for cell differentiation, cell adhesion, and angiogenesis, which contribute to chemoresistance in GBM. CONCLUSIONS: Our findings suggest that prognostic radiomic features from routine Gd-T1w MRI may also be significantly associated with key biological processes that affect response to chemotherapy in GBM.


Subject(s)
Biomarkers, Tumor/genetics , Gene Expression Regulation, Neoplastic , Glioblastoma/mortality , Image Interpretation, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Mutation , Risk Assessment/methods , Adult , Aged , Aged, 80 and over , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/genetics , Brain Neoplasms/mortality , Brain Neoplasms/pathology , Female , Glioblastoma/diagnostic imaging , Glioblastoma/genetics , Glioblastoma/pathology , Humans , Male , Middle Aged , Prognosis , Signal Transduction , Survival Rate , Young Adult
13.
J Genet Genomics ; 47(10): 595-609, 2020 10 20.
Article in English | MEDLINE | ID: mdl-33423960

ABSTRACT

Genome-scale studies focusing on molecular profiling of cancers across tissue types have revealed a plethora of aberrations across the genomic, transcriptomic, and epigenomic scales. The significant molecular heterogeneity across individual tumors even within the same tissue context complicates decoding the key etiologic mechanisms of this disease. Furthermore, it is increasingly likely that biologic mechanisms underlying the pathobiology of cancer involve multiple molecular entities interacting across functional scales. This has motivated the development of computational approaches that integrate molecular measurements with prior biological knowledge in increasingly intricate ways to enable the discovery of driver genomic aberrations across cancers. Here, we review diverse methodological approaches that have powered significant advances in our understanding of the genomic underpinnings of cancer at the cohort and at the individual tumor scales. We outline the key advances and challenges in the computational discovery of cancer mechanisms while motivating the development of systems biology approaches to comprehensively decode the biologic drivers of this complex disease.


Subject(s)
Carcinogenesis/genetics , Computational Biology , Neoplasms/genetics , Transcriptome/genetics , Gene Expression Profiling/methods , Gene Expression Regulation, Neoplastic/genetics , Genome, Human/genetics , Genomics , Humans , Neoplasms/pathology
14.
Cell Rep ; 29(2): 249-257.e8, 2019 10 08.
Article in English | MEDLINE | ID: mdl-31597089

ABSTRACT

Monoclonal antibodies (mAbs) targeting the oncogenic receptor tyrosine kinase ERBB2/HER2, such as Trastuzumab, are the standard of care therapy for breast cancers driven by ERBB2 overexpression and activation. However, a substantial proportion of patients exhibit de novo resistance. Here, by comparing matched Trastuzumab-naive and post-treatment patient samples from a neoadjuvant trial, we link resistance with elevation of H3K27me3, a repressive histone modification catalyzed by polycomb repressor complex 2 (PRC2). In ErbB2+ breast cancer models, PRC2 silences endogenous retroviruses (ERVs) to suppress anti-tumor type-I interferon (IFN) responses. In patients, elevated H3K27me3 in tumor cells following Trastuzumab treatment correlates with suppression of interferon-driven viral defense gene expression signatures and poor response. Using an immunocompetent model, we provide evidence that EZH2 inhibitors promote interferon-driven immune responses that enhance the efficacy of anti-ErbB2 mAbs, suggesting the potential clinical benefit of epigenomic reprogramming by H3K27me3 depletion in Trastuzumab-resistant disease.


Subject(s)
Histones/metabolism , Lysine/metabolism , Molecular Targeted Therapy , Receptor, ErbB-2/metabolism , Adult , Animals , Breast Neoplasms/drug therapy , Cell Line, Tumor , Drug Resistance, Neoplasm , Enhancer of Zeste Homolog 2 Protein/metabolism , Female , Humans , Interferon Type I/metabolism , Methylation , Mice , Models, Biological , Polycomb Repressive Complex 2/metabolism , Retroelements/genetics , Trastuzumab/therapeutic use , Up-Regulation
15.
Nat Commun ; 10(1): 2901, 2019 07 01.
Article in English | MEDLINE | ID: mdl-31263101

ABSTRACT

Dysregulation of histone modifications promotes carcinogenesis by altering transcription. Breast cancers frequently overexpress the histone methyltransferase EZH2, the catalytic subunit of Polycomb Repressor Complex 2 (PRC2). However, the role of EZH2 in this setting is unclear due to the context-dependent functions of PRC2 and the heterogeneity of breast cancer. Moreover, the mechanisms underlying PRC2 overexpression in cancer are obscure. Here, using multiple models of breast cancer driven by the oncogene ErbB2, we show that the tyrosine kinase c-Src links energy sufficiency with PRC2 overexpression via control of mRNA translation. By stimulating mitochondrial ATP production, c-Src suppresses energy stress, permitting sustained activation of the mammalian/mechanistic target of rapamycin complex 1 (mTORC1), which increases the translation of mRNAs encoding the PRC2 subunits Ezh2 and Suz12. We show that Ezh2 overexpression and activity are pivotal in ErbB2-mediated mammary tumourigenesis. These results reveal the hitherto unknown c-Src/mTORC1/PRC2 axis, which is essential for ErbB2-driven carcinogenesis.


Subject(s)
Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Epigenesis, Genetic , Polycomb Repressive Complex 2/genetics , Receptor, ErbB-2/metabolism , src-Family Kinases/metabolism , Adenosine Triphosphate/metabolism , Adult , Animals , Breast Neoplasms/pathology , CSK Tyrosine-Protein Kinase , Carcinogenesis , Cell Line, Tumor , Enhancer of Zeste Homolog 2 Protein/genetics , Enhancer of Zeste Homolog 2 Protein/metabolism , Female , Humans , Mammary Glands, Human/metabolism , Mammary Glands, Human/pathology , Mechanistic Target of Rapamycin Complex 1/genetics , Mechanistic Target of Rapamycin Complex 1/metabolism , Mice , Mice, Inbred NOD , Mice, Transgenic , Middle Aged , Mitochondria/genetics , Mitochondria/metabolism , Polycomb Repressive Complex 2/metabolism , Protein Biosynthesis , Receptor, ErbB-2/genetics , src-Family Kinases/genetics
16.
JAMA Netw Open ; 2(4): e192561, 2019 04 05.
Article in English | MEDLINE | ID: mdl-31002322

ABSTRACT

Importance: There has been significant recent interest in understanding the utility of quantitative imaging to delineate breast cancer intrinsic biological factors and therapeutic response. No clinically accepted biomarkers are as yet available for estimation of response to human epidermal growth factor receptor 2 (currently known as ERBB2, but referred to as HER2 in this study)-targeted therapy in breast cancer. Objective: To determine whether imaging signatures on clinical breast magnetic resonance imaging (MRI) could noninvasively characterize HER2-positive tumor biological factors and estimate response to HER2-targeted neoadjuvant therapy. Design, Setting, and Participants: In a retrospective diagnostic study encompassing 209 patients with breast cancer, textural imaging features extracted within the tumor and annular peritumoral tissue regions on MRI were examined as a means to identify increasingly granular breast cancer subgroups relevant to therapeutic approach and response. First, among a cohort of 117 patients who received an MRI prior to neoadjuvant chemotherapy (NAC) at a single institution from April 27, 2012, through September 4, 2015, imaging features that distinguished HER2+ tumors from other receptor subtypes were identified. Next, among a cohort of 42 patients with HER2+ breast cancers with available MRI and RNaseq data accumulated from a multicenter, preoperative clinical trial (BrUOG 211B), a signature of the response-associated HER2-enriched (HER2-E) molecular subtype within HER2+ tumors (n = 42) was identified. The association of this signature with pathologic complete response was explored in 2 patient cohorts from different institutions, where all patients received HER2-targeted NAC (n = 28, n = 50). Finally, the association between significant peritumoral features and lymphocyte distribution was explored in patients within the BrUOG 211B trial who had corresponding biopsy hematoxylin-eosin-stained slide images. Data analysis was conducted from January 15, 2017, to February 14, 2019. Main Outcomes and Measures: Evaluation of imaging signatures by the area under the receiver operating characteristic curve (AUC) in identifying HER2+ molecular subtypes and distinguishing pathologic complete response (ypT0/is) to NAC with HER2-targeting. Results: In the 209 patients included (mean [SD] age, 51.1 [11.7] years), features from the peritumoral regions better discriminated HER2-E tumors (maximum AUC, 0.85; 95% CI, 0.79-0.90; 9-12 mm from the tumor) compared with intratumoral features (AUC, 0.76; 95% CI, 0.69-0.84). A classifier combining peritumoral and intratumoral features identified the HER2-E subtype (AUC, 0.89; 95% CI, 0.84-0.93) and was significantly associated with response to HER2-targeted therapy in both validation cohorts (AUC, 0.80; 95% CI, 0.61-0.98 and AUC, 0.69; 95% CI, 0.53-0.84). Features from the 0- to 3-mm peritumoral region were significantly associated with the density of tumor-infiltrating lymphocytes (R2 = 0.57; 95% CI, 0.39-0.75; P = .002). Conclusions and Relevance: A combination of peritumoral and intratumoral characteristics appears to identify intrinsic molecular subtypes of HER2+ breast cancers from imaging, offering insights into immune response within the peritumoral environment and suggesting potential benefit for treatment guidance.


Subject(s)
Breast Neoplasms/pathology , Breast Neoplasms/therapy , Magnetic Resonance Imaging/statistics & numerical data , Radiometry/statistics & numerical data , Receptor, ErbB-2/metabolism , Adult , Biomarkers, Tumor/analysis , Breast Neoplasms/metabolism , Female , Humans , Lymphocytes, Tumor-Infiltrating/pathology , Middle Aged , Neoadjuvant Therapy , Preoperative Period , Retrospective Studies , Treatment Outcome
17.
Gastroenterology ; 156(6): 1761-1774, 2019 05.
Article in English | MEDLINE | ID: mdl-30768984

ABSTRACT

BACKGROUND & AIMS: Esophageal adenocarcinoma (EAC) is resistant to standard chemoradiation treatments, and few targeted therapies are available. We used large-scale tissue profiling and pharmacogenetic analyses to identify deregulated signaling pathways in EAC tissues that might be targeted to slow tumor growth or progression. METHODS: We collected 397 biopsy specimens from patients with EAC and nonmalignant Barrett's esophagus (BE), with or without dysplasia. We performed RNA-sequencing analyses and used systems biology approaches to identify pathways that are differentially activated in EAC vs nonmalignant dysplastic tissues; pathway activities were confirmed with immunohistochemistry and quantitative real-time polymerase chain reaction analyses of signaling components in patient tissue samples. Human EAC (FLO-1 and EsoAd1), dysplastic BE (CP-B, CP-C, CP-D), and nondysplastic BE (CP-A) cells were incubated with pharmacologic inhibitors or transfected with small interfering RNAs. We measured effects on proliferation, colony formation, migration, and/or growth of xenograft tumors in nude mice. RESULTS: Comparisons of EAC vs nondysplastic BE tissues showed hyperactivation of transforming growth factor-ß (TGFB) and/or Jun N-terminal kinase (JNK) signaling pathways in more than 80% of EAC samples. Immunohistochemical analyses showed increased nuclear localization of phosphorylated JUN and SMAD proteins in EAC tumor tissues compared with nonmalignant tissues. Genes regulated by the TGFB and JNK pathway were overexpressed specifically in EAC and dysplastic BE. Pharmacologic inhibition or knockdown of TGFB or JNK signaling components in EAC cells (FLO-1 or EsoAd1) significantly reduced cell proliferation, colony formation, cell migration, and/or growth of xenograft tumors in mice in a SMAD4-independent manner. Inhibition of the TGFB pathway in BE cell lines reduced the proliferation of dysplastic, but not nondysplastic, cells. CONCLUSIONS: In a transcriptome analysis of EAC and nondysplastic BE tissues, we found the TGFB and JNK signaling pathways to be hyperactivated in EACs and the genes regulated by these pathways to be overexpressed in EAC and dysplastic BE. Inhibiting these pathways in EAC cells reduces their proliferation, migration, and formation of xenograft tumors. Strategies to block the TGFB and JNK signaling pathways might be developed for treatment of EAC.


Subject(s)
Adenocarcinoma/genetics , Adenocarcinoma/metabolism , Esophageal Neoplasms/genetics , Esophageal Neoplasms/metabolism , MAP Kinase Signaling System/genetics , RNA, Neoplasm/analysis , Transforming Growth Factor beta/metabolism , Animals , Barrett Esophagus/genetics , Barrett Esophagus/metabolism , Barrett Esophagus/pathology , Benzamides/pharmacology , Cell Line, Tumor , Cell Movement , Cell Proliferation , Dioxoles/pharmacology , Female , Gene Expression Regulation, Neoplastic , Humans , Male , Mice , Neoplasm Transplantation , Oligonucleotide Array Sequence Analysis , Pharmacogenomic Testing , Proto-Oncogene Proteins c-jun/metabolism , Pyrazoles/pharmacology , Quinolines/pharmacology , Receptors, Transforming Growth Factor beta/antagonists & inhibitors , Smad Proteins/genetics , Smad Proteins/metabolism , Systems Biology , Transcriptome , Transforming Growth Factor beta/antagonists & inhibitors , Transforming Growth Factor beta/genetics , Tumor Stem Cell Assay
18.
Clin Epigenetics ; 10(1): 127, 2018 10 22.
Article in English | MEDLINE | ID: mdl-30348202

ABSTRACT

BACKGROUND: DNA methylation is a key epigenetic mark in mammalian organisms that plays key roles in chromatin organization and gene expression. Although DNA methylation in gene promoters is generally associated with gene repression, recent studies demonstrate that DNA methylation in gene bodies and intergenic regions of the genome may result in distinct modes of gene regulation. Furthermore, the molecular mechanisms underlying the establishment and maintenance of DNA methylation in human health and disease remain to be fully elucidated. We recently demonstrated that a subset of long non-coding RNAs (lncRNAs) associates with the major DNA methyltransferase DNMT1 in human colon cancer cells, and the dysregulation of such lncRNAs contribute to aberrant DNA methylation patterns. RESULTS: In the current study, we assessed the impact of a key DNMT1-associated lncRNA, DACOR1, on genome-wide DNA methylation using reduced representation bisulfite sequencing (RRBS). Our findings demonstrated that induction of DACOR1 in colon cancer cells restores DNA methylation at thousands of CpG sites throughout the genome including promoters, gene bodies, and intergenic regions. Importantly, these sites overlap with regions of the genome that become hypomethylated in colon tumors. Furthermore, induction of DACOR1 results in repression of FOS and JUN and, consequently, reduced AP-1 transcription factor activity. CONCLUSION: Collectively, our results demonstrate a key role of lncRNAs in regulating DNA methylation in human cells, and the dysregulation of such lncRNAs could emerge as a key mechanism by which DNA methylation patterns become altered in human tumors.


Subject(s)
Colonic Neoplasms/genetics , DNA Methylation , RNA, Long Noncoding/genetics , Whole Genome Sequencing/methods , Cell Line, Tumor , CpG Islands , Epigenesis, Genetic , Gene Expression Regulation, Neoplastic , Humans , Promoter Regions, Genetic , Signal Transduction
19.
Hum Pathol ; 80: 163-169, 2018 10.
Article in English | MEDLINE | ID: mdl-29894722

ABSTRACT

The transcription factor SOX10 mediates the differentiation of neural crest-derived cells, and SOX10 by immunohistochemistry (IHC) is used primarily for the diagnosis of melanoma. SOX10 expression has been previously documented in benign breast myoepithelial cells. However there is limited literature on its expression in triple-negative breast carcinoma (TNBC). The aim was to study the clinical, pathologic and molecular profiles of SOX10+ tumors in TNBC. Tissue microarrays of TNBC were evaluated for SOX10 expression in 48 cases. SOX10 expression was correlated with clinical and pathologic features such as age, grade, and stage. Gene expression was analyzed on RNA extracted from formalin-fixed paraffin-embedded (FFPE) specimens with Affymetrix 2.0 HTA. Co-expression of SOX10 with androgen receptor (AR), WT1, gross cystic disease fluid protein-15 (GCDFP-15), mammaglobin, epidermal growth factor receptor (EGFR), CK5/6 and GATA transcription factor 3 (GATA3) were also assessed. The mean age was 59.38 (range, 28-90 years). Overall, 37.5% cases (18/48) were SOX10+. There was no association between SOX10 expression and age, grade or stage of patients; 6 of 10 (60%) cases of basal-like 1 (BL1), and 5 of 8 cases of unstable (UNS) molecular subtype were SOX10+. One of 5 basal-like-2 (BL2), 1 of 6 immunomodulatory (IM), 1 of 4 mesenchymal (M), 1 of 5 luminal androgen receptor (LAR) and 2 of 8 mesenchymal stem cell (MSL) showed lower frequencies of SOX10 expression. There was negative correlation between SOX10 and AR+ subtypes (P < .002). SOX10 was positively correlated with WT1 (P = .05). SOX10 did not show significant correlation with mammaglobin, GCDFP15, EGFR, CK5/6 and GATA3. SOX10 expression in the basal-like and unstable molecular subtypes supports the concept that these neoplasms show myoepithelial differentiation.


Subject(s)
Neural Crest/pathology , SOXE Transcription Factors/metabolism , Triple Negative Breast Neoplasms/pathology , Adult , Aged , Biomarkers, Tumor/analysis , Female , GATA3 Transcription Factor/metabolism , Humans , Immunohistochemistry/methods , Middle Aged , SOXE Transcription Factors/genetics , Triple Negative Breast Neoplasms/diagnosis
20.
Sci Rep ; 8(1): 7, 2018 01 08.
Article in English | MEDLINE | ID: mdl-29311558

ABSTRACT

Hypoxia, a characteristic trait of Glioblastoma (GBM), is known to cause resistance to chemo-radiation treatment and is linked with poor survival. There is hence an urgent need to non-invasively characterize tumor hypoxia to improve GBM management. We hypothesized that (a) radiomic texture descriptors can capture tumor heterogeneity manifested as a result of molecular variations in tumor hypoxia, on routine treatment naïve MRI, and (b) these imaging based texture surrogate markers of hypoxia can discriminate GBM patients as short-term (STS), mid-term (MTS), and long-term survivors (LTS). 115 studies (33 STS, 41 MTS, 41 LTS) with gadolinium-enhanced T1-weighted MRI (Gd-T1w) and T2-weighted (T2w) and FLAIR MRI protocols and the corresponding RNA sequences were obtained. After expert segmentation of necrotic, enhancing, and edematous/nonenhancing tumor regions for every study, 30 radiomic texture descriptors were extracted from every region across every MRI protocol. Using the expression profile of 21 hypoxia-associated genes, a hypoxia enrichment score (HES) was obtained for the training cohort of 85 cases. Mutual information score was used to identify a subset of radiomic features that were most informative of HES within 3-fold cross-validation to categorize studies as STS, MTS, and LTS. When validated on an additional cohort of 30 studies (11 STS, 9 MTS, 10 LTS), our results revealed that the most discriminative features of HES were also able to distinguish STS from LTS (p = 0.003).


Subject(s)
Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Glioblastoma/genetics , Glioblastoma/metabolism , Hypoxia/genetics , Hypoxia/metabolism , Adult , Aged , Biomarkers , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/mortality , Female , Gene Expression Profiling , Genomics/methods , Glioblastoma/diagnostic imaging , Glioblastoma/mortality , Humans , Kaplan-Meier Estimate , Magnetic Resonance Imaging/methods , Male , Middle Aged , Prognosis , Proportional Hazards Models , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...