Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Cell Rep ; 43(1): 113557, 2024 01 23.
Article in English | MEDLINE | ID: mdl-38113141

ABSTRACT

Metabolic reprogramming in pediatric diffuse midline glioma is driven by gene expression changes induced by the hallmark histone mutation H3K27M, which results in aberrantly permissive activation of oncogenic signaling pathways. Previous studies of diffuse midline glioma with altered H3K27 (DMG-H3K27a) have shown that the RAS pathway, specifically through its downstream kinase, extracellular-signal-related kinase 5 (ERK5), is critical for tumor growth. Further downstream effectors of ERK5 and their role in DMG-H3K27a metabolic reprogramming have not been explored. We establish that ERK5 is a critical regulator of cell proliferation and glycolysis in DMG-H3K27a. We demonstrate that ERK5 mediates glycolysis through activation of transcription factor MEF2A, which subsequently modulates expression of glycolytic enzyme PFKFB3. We show that in vitro and mouse models of DMG-H3K27a are sensitive to the loss of PFKFB3. Multi-targeted drug therapy against the ERK5-PFKFB3 axis, such as with small-molecule inhibitors, may represent a promising therapeutic approach in patients with pediatric diffuse midline glioma.


Subject(s)
Glioma , Histones , Animals , Child , Humans , Mice , Extracellular Signal-Regulated MAP Kinases , Glioma/genetics , Glycolysis , Histones/genetics , Phosphofructokinase-2 , Phosphoric Monoester Hydrolases , Signal Transduction
2.
Nat Genet ; 54(12): 1865-1880, 2022 12.
Article in English | MEDLINE | ID: mdl-36471070

ABSTRACT

Canonical (H3.1/H3.2) and noncanonical (H3.3) histone 3 K27M-mutant gliomas have unique spatiotemporal distributions, partner alterations and molecular profiles. The contribution of the cell of origin to these differences has been challenging to uncouple from the oncogenic reprogramming induced by the mutation. Here, we perform an integrated analysis of 116 tumors, including single-cell transcriptome and chromatin accessibility, 3D chromatin architecture and epigenomic profiles, and show that K27M-mutant gliomas faithfully maintain chromatin configuration at developmental genes consistent with anatomically distinct oligodendrocyte precursor cells (OPCs). H3.3K27M thalamic gliomas map to prosomere 2-derived lineages. In turn, H3.1K27M ACVR1-mutant pontine gliomas uniformly mirror early ventral NKX6-1+/SHH-dependent brainstem OPCs, whereas H3.3K27M gliomas frequently resemble dorsal PAX3+/BMP-dependent progenitors. Our data suggest a context-specific vulnerability in H3.1K27M-mutant SHH-dependent ventral OPCs, which rely on acquisition of ACVR1 mutations to drive aberrant BMP signaling required for oncogenesis. The unifying action of K27M mutations is to restrict H3K27me3 at PRC2 landing sites, whereas other epigenetic changes are mainly contingent on the cell of origin chromatin state and cycling rate.


Subject(s)
Chromatin , Epigenomics , Cell Lineage/genetics , Brain
3.
Proc Natl Acad Sci U S A ; 119(29): e2202015119, 2022 07 19.
Article in English | MEDLINE | ID: mdl-35858326

ABSTRACT

Epigenetic dysregulation is a universal feature of cancer that results in altered patterns of gene expression that drive malignancy. Brain tumors exhibit subtype-specific epigenetic alterations; however, the molecular mechanisms responsible for these diverse epigenetic states remain unclear. Here, we show that the developmental transcription factor Sox9 differentially regulates epigenomic states in high-grade glioma (HGG) and ependymoma (EPN). Using our autochthonous mouse models, we found that Sox9 suppresses HGG growth and expands associated H3K27ac states, while promoting ZFTA-RELA (ZRFUS) EPN growth and diminishing H3K27ac states. These contrasting roles for Sox9 correspond with protein interactions with histone deacetylating complexes in HGG and an association with the ZRFUS oncofusion in EPN. Mechanistic studies revealed extensive Sox9 and ZRFUS promoter co-occupancy, indicating functional synergy in promoting EPN tumorigenesis. Together, our studies demonstrate how epigenomic states are differentially regulated in distinct subtypes of brain tumors, while revealing divergent roles for Sox9 in HGG and EPN tumorigenesis.


Subject(s)
Brain Neoplasms , Ependymoma , Epigenesis, Genetic , SOX9 Transcription Factor , Animals , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Carcinogenesis/genetics , Ependymoma/genetics , Ependymoma/pathology , Mice , Neoplasms, Experimental/genetics , Neoplasms, Experimental/pathology , SOX9 Transcription Factor/genetics , SOX9 Transcription Factor/physiology
5.
Nat Cancer ; 3(5): 629-648, 2022 05.
Article in English | MEDLINE | ID: mdl-35422502

ABSTRACT

Diffuse midline gliomas (DMGs) bearing driver mutations of histone 3 lysine 27 (H3K27M) are incurable brain tumors with unique epigenomes. Here, we generated a syngeneic H3K27M mouse model to study the amino acid metabolic dependencies of these tumors. H3K27M mutant cells were highly dependent on methionine. Interrogating the methionine cycle dependency through a short-interfering RNA screen identified the enzyme methionine adenosyltransferase 2A (MAT2A) as a critical vulnerability in these tumors. This vulnerability was not mediated through the canonical mechanism of MTAP deletion; instead, DMG cells have lower levels of MAT2A protein, which is mediated by negative feedback induced by the metabolite decarboxylated S-adenosyl methionine. Depletion of residual MAT2A induces global depletion of H3K36me3, a chromatin mark of transcriptional elongation perturbing oncogenic and developmental transcriptional programs. Moreover, methionine-restricted diets extended survival in multiple models of DMG in vivo. Collectively, our results suggest that MAT2A presents an exploitable therapeutic vulnerability in H3K27M gliomas.


Subject(s)
Brain Neoplasms , Glioma , Methionine Adenosyltransferase/metabolism , Animals , Brain Neoplasms/genetics , Epigenome , Glioma/genetics , Histones/genetics , Methionine/genetics , Mice
8.
Cancer Discov ; 11(9): 2216-2229, 2021 09.
Article in English | MEDLINE | ID: mdl-33741711

ABSTRACT

ZFTA (C11orf95)-a gene of unknown function-partners with a variety of transcriptional coactivators in translocations that drive supratentorial ependymoma, a frequently lethal brain tumor. Understanding the function of ZFTA is key to developing therapies that inhibit these fusion proteins. Here, using a combination of transcriptomics, chromatin immunoprecipitation sequencing, and proteomics, we interrogated a series of deletion-mutant genes to identify a tripartite transformation mechanism of ZFTA-containing fusions, including: spontaneous nuclear translocation, extensive chromatin binding, and SWI/SNF, SAGA, and NuA4/Tip60 HAT chromatin modifier complex recruitment. Thereby, ZFTA tethers fusion proteins across the genome, modifying chromatin to an active state and enabling its partner transcriptional coactivators to promote promiscuous expression of a transforming transcriptome. Using mouse models, we validate further those elements of ZFTA-fusion proteins that are critical for transformation-including ZFTA zinc fingers and partner gene transactivation domains-thereby unmasking vulnerabilities for therapeutic targeting. SIGNIFICANCE: Ependymomas are hard-to-treat brain tumors driven by translocations between ZFTA and a variety of transcriptional coactivators. We dissect the transforming mechanism of these fusion proteins and identify protein domains indispensable for tumorigenesis, thereby providing insights into the molecular basis of ependymoma tumorigenesis and vulnerabilities for therapeutic targeting.This article is highlighted in the In This Issue feature, p. 2113.


Subject(s)
Cell Transformation, Neoplastic , Chromatin Assembly and Disassembly , DNA-Binding Proteins/genetics , Ependymoma/genetics , Supratentorial Neoplasms/genetics , Transcription Factors/genetics , Translocation, Genetic , Animals , Mice
9.
Cancer Discov ; 11(9): 2200-2215, 2021 09.
Article in English | MEDLINE | ID: mdl-33741710

ABSTRACT

More than 60% of supratentorial ependymomas harbor a ZFTA-RELA (ZRfus) gene fusion (formerly C11orf95-RELA). To study the biology of ZRfus, we developed an autochthonous mouse tumor model using in utero electroporation (IUE) of the embryonic mouse brain. Integrative epigenomic and transcriptomic mapping was performed on IUE-driven ZRfus tumors by CUT&RUN, chromatin immunoprecipitation sequencing, assay for transposase-accessible chromatin sequencing, and RNA sequencing and compared with human ZRfus-driven ependymoma. In addition to direct canonical NFκB pathway activation, ZRfus dictates a neoplastic transcriptional program and binds to thousands of unique sites across the genome that are enriched with PLAGL family transcription factor (TF) motifs. ZRfus activates gene expression programs through recruitment of transcriptional coactivators (Brd4, Ep300, Cbp, Pol2) that are amenable to pharmacologic inhibition. Downstream ZRfus target genes converge on developmental programs marked by PLAGL TF proteins, and activate neoplastic programs enriched in Mapk, focal adhesion, and gene imprinting networks. SIGNIFICANCE: Ependymomas are aggressive brain tumors. Although drivers of supratentorial ependymoma (ZFTA- and YAP1-associated gene fusions) have been discovered, their functions remain unclear. Our study investigates the biology of ZFTA-RELA-driven ependymoma, specifically mechanisms of transcriptional deregulation and direct downstream gene networks that may be leveraged for potential therapeutic testing.This article is highlighted in the In This Issue feature, p. 2113.


Subject(s)
DNA-Binding Proteins/genetics , Ependymoma/genetics , Supratentorial Neoplasms/genetics , Transcription Factor RelA/genetics , Transcription Factors/genetics , Animals , Disease Models, Animal , Ependymoma/pathology , Mice , Supratentorial Neoplasms/pathology
10.
Nat Med ; 26(5): 720-731, 2020 05.
Article in English | MEDLINE | ID: mdl-32341580

ABSTRACT

Recurrent medulloblastoma and ependymoma are universally lethal, with no approved targeted therapies and few candidates presently under clinical evaluation. Nearly all recurrent medulloblastomas and posterior fossa group A (PFA) ependymomas are located adjacent to and bathed by the cerebrospinal fluid, presenting an opportunity for locoregional therapy, bypassing the blood-brain barrier. We identify three cell-surface targets, EPHA2, HER2 and interleukin 13 receptor α2, expressed on medulloblastomas and ependymomas, but not expressed in the normal developing brain. We validate intrathecal delivery of EPHA2, HER2 and interleukin 13 receptor α2 chimeric antigen receptor T cells as an effective treatment for primary, metastatic and recurrent group 3 medulloblastoma and PFA ependymoma xenografts in mouse models. Finally, we demonstrate that administration of these chimeric antigen receptor T cells into the cerebrospinal fluid, alone or in combination with azacytidine, is a highly effective therapy for multiple metastatic mouse models of group 3 medulloblastoma and PFA ependymoma, thereby providing a rationale for clinical trials of these approaches in humans.


Subject(s)
Brain Neoplasms/therapy , Cancer Vaccines/administration & dosage , Cerebrospinal Fluid/drug effects , Ependymoma/therapy , Immunotherapy, Adoptive/methods , Medulloblastoma/therapy , Animals , Brain Neoplasms/cerebrospinal fluid , Brain Neoplasms/immunology , Brain Neoplasms/pathology , Cerebellar Neoplasms/cerebrospinal fluid , Cerebellar Neoplasms/immunology , Cerebellar Neoplasms/pathology , Cerebellar Neoplasms/therapy , Cerebrospinal Fluid/immunology , Child , Child, Preschool , Drug Delivery Systems/methods , Ependymoma/cerebrospinal fluid , Ependymoma/immunology , Ependymoma/pathology , Female , HEK293 Cells , Humans , Infant , Injections, Intraventricular , Male , Medulloblastoma/cerebrospinal fluid , Medulloblastoma/immunology , Medulloblastoma/pathology , Mice , Neoplasm Metastasis , Receptors, Chimeric Antigen/administration & dosage , Receptors, Chimeric Antigen/genetics , Receptors, Chimeric Antigen/immunology , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , T-Lymphocytes/transplantation , Treatment Outcome , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
11.
Appl Environ Microbiol ; 86(6)2020 03 02.
Article in English | MEDLINE | ID: mdl-31953333

ABSTRACT

The relative importance of host-specific selection or environmental factors in determining the composition of the intestinal microbiome in wild vertebrates remains poorly understood. Here, we used metagenomic shotgun sequencing of individual specimens to compare the levels of intra- and interspecific variation of intestinal microbiome communities in two ecotypes (NEAC and NCC) of Atlantic cod (Gadus morhua) that have distinct behavior and habitats and three Gadidae species that occupy a range of ecological niches. Interestingly, we found significantly diverged microbiomes among the two Atlantic cod ecotypes. Interspecific patterns of variation are more variable, with significantly diverged communities for most species' comparisons, apart from the comparison between coastal cod (NCC) and Norway pout (Trisopterus esmarkii), whose community compositions are not significantly diverged. The absence of consistent species-specific microbiomes suggests that external environmental factors, such as temperature, diet, or a combination thereof, comprise major drivers of the intestinal community composition of codfishes.IMPORTANCE The composition of the intestinal microbial community associated with teleost fish is influenced by a diversity of factors, ranging from internal factors (such as host-specific selection) to external factors (such as niche occupation). These factors are often difficult to separate, as differences in niche occupation (e.g., diet, temperature, or salinity) may correlate with distinct evolutionary trajectories. Here, we investigate four gadoid species with contrasting levels of evolutionary separation and niche occupation. Using metagenomic shotgun sequencing, we observed distinct microbiomes among two Atlantic cod (Gadus morhua) ecotypes (NEAC and NCC) with distinct behavior and habitats. In contrast, interspecific patterns of variation were more variable. For instance, we did not observe interspecific differentiation between the microbiomes of coastal cod (NCC) and Norway pout (Trisopterus esmarkii), whose lineages underwent evolutionary separation over 20 million years ago. The observed pattern of microbiome variation in these gadoid species is therefore most parsimoniously explained by differences in niche occupation.


Subject(s)
Bacteria/genetics , Ecotype , Gadiformes/microbiology , Gastrointestinal Microbiome/genetics , Metagenome , Animals , Bacteria/isolation & purification , Female , Gadus morhua/microbiology , Male , Norway
12.
Genome Biol Evol ; 11(11): 3291-3308, 2019 11 01.
Article in English | MEDLINE | ID: mdl-31687752

ABSTRACT

The Gasterosteidae fish family hosts several species that are important models for eco-evolutionary, genetic, and genomic research. In particular, a wealth of genetic and genomic data has been generated for the three-spined stickleback (Gasterosteus aculeatus), the "ecology's supermodel," whereas the genomic resources for the nine-spined stickleback (Pungitius pungitius) have remained relatively scarce. Here, we report a high-quality chromosome-level genome assembly of P. pungitius consisting of 5,303 contigs (N50 = 1.2 Mbp) with a total size of 521 Mbp. These contigs were mapped to 21 linkage groups using a high-density linkage map, yielding a final assembly with 98.5% BUSCO completeness. A total of 25,062 protein-coding genes were annotated, and about 23% of the assembly was found to consist of repetitive elements. A comprehensive analysis of repetitive elements uncovered centromere-specific tandem repeats and provided insights into the evolution of retrotransposons. A multigene phylogenetic analysis inferred a divergence time of about 26 million years ago (Ma) between nine- and three-spined sticklebacks, which is far older than the commonly assumed estimate of 13 Ma. Compared with the three-spined stickleback, we identified an additional duplication of several genes in the hemoglobin cluster. Sequencing data from populations adapted to different environments indicated potential copy number variations in hemoglobin genes. Furthermore, genome-wide synteny comparisons between three- and nine-spined sticklebacks identified chromosomal rearrangements underlying the karyotypic differences between the two species. The high-quality chromosome-scale assembly of the nine-spined stickleback genome obtained with long-read sequencing technology provides a crucial resource for comparative and population genomic investigations of stickleback fishes and teleosts.


Subject(s)
Genome , Perciformes/genetics , Animals , DNA Transposable Elements , Evolution, Molecular , Female , Fish Proteins/genetics , Hemoglobins/genetics , Male , Microsatellite Repeats , Molecular Sequence Annotation , Perciformes/classification , Phylogeny , Recombination, Genetic
13.
Environ Microbiol ; 21(7): 2576-2594, 2019 07.
Article in English | MEDLINE | ID: mdl-31091345

ABSTRACT

Atlantic cod (Gadus morhua) is an ecologically important species with a wide-spread distribution in the North Atlantic Ocean, yet little is known about the diversity of its intestinal microbiome in its natural habitat. No geographical differentiation in this microbiome was observed based on 16S rRNA amplicon analyses, yet such finding may result from an inherent lack of power of this method to resolve fine-scaled biological complexity. Here, we use metagenomic shotgun sequencing to investigate the intestinal microbiome of 19 adult Atlantic cod individuals from two coastal populations in Norway-located 470 km apart. Resolving the species community to unprecedented resolution, we identify two abundant species, Photobacterium iliopiscarium and Photobacterium kishitanii, which comprise over 50% of the classified reads. Interestingly, the intestinal P. kishitanii strains have functionally intact lux genes, and its high abundance suggests that fish intestines form an important part of its ecological niche. These observations support a hypothesis that bioluminescence plays an ecological role in the marine food web. Despite our improved taxonomical resolution, we identify no geographical differences in bacterial community structure, indicating that the intestinal microbiome of these coastal cod is colonized by a limited number of closely related bacterial species with a broad geographical distribution.


Subject(s)
Bacteria/isolation & purification , Gadus morhua/microbiology , Gastrointestinal Microbiome , Intestines/microbiology , Animals , Atlantic Ocean , Bacteria/classification , Bacteria/genetics , Metagenome , Norway , Photobacterium/genetics , RNA, Ribosomal, 16S/genetics
14.
G3 (Bethesda) ; 9(5): 1283-1294, 2019 05 07.
Article in English | MEDLINE | ID: mdl-30833292

ABSTRACT

Salmonids represent an intriguing taxonomical group for investigating genome evolution in vertebrates due to their relatively recent last common whole genome duplication event, which occurred between 80 and 100 million years ago. Here, we report on the chromosome-level genome assembly of European grayling (Thymallus thymallus), which represents one of the earliest diverged salmonid subfamilies. To achieve this, we first generated relatively long genomic scaffolds by using a previously published draft genome assembly along with long-read sequencing data and a linkage map. We then merged those scaffolds by applying synteny evidence from the Atlantic salmon (Salmo salar) genome. Comparisons of the European grayling genome assembly to the genomes of Atlantic salmon and Northern pike (Esox lucius), the latter used as a nonduplicated outgroup, detailed aspects of the characteristic chromosome evolution process that has taken place in European grayling. While Atlantic salmon and other salmonid genomes are portrayed by the typical occurrence of numerous chromosomal fusions, European grayling chromosomes were confirmed to be fusion-free and were characterized by a relatively large proportion of paracentric and pericentric inversions. We further reported on transposable elements specific to either the European grayling or Atlantic salmon genome, on the male-specific sdY gene in the European grayling chromosome 11A, and on regions under residual tetrasomy in the homeologous European grayling chromosome pairs 9A-9B and 25A-25B. The same chromosome pairs have been observed under residual tetrasomy in Atlantic salmon and in other salmonids, suggesting that this feature has been conserved since the subfamily split.


Subject(s)
Chromosomes , Evolution, Molecular , Genome , Genomics , Salmo salar/genetics , Animals , Centromere/genetics , Chromosome Mapping , Computational Biology/methods , Female , Genetic Linkage , Genomics/methods , Male , Repetitive Sequences, Nucleic Acid
15.
Genome Biol Evol ; 10(10): 2785-2800, 2018 10 01.
Article in English | MEDLINE | ID: mdl-30239729

ABSTRACT

Whole-genome duplication (WGD) has been a major evolutionary driver of increased genomic complexity in vertebrates. One such event occurred in the salmonid family ∼80 Ma (Ss4R) giving rise to a plethora of structural and regulatory duplicate-driven divergence, making salmonids an exemplary system to investigate the evolutionary consequences of WGD. Here, we present a draft genome assembly of European grayling (Thymallus thymallus) and use this in a comparative framework to study evolution of gene regulation following WGD. Among the Ss4R duplicates identified in European grayling and Atlantic salmon (Salmo salar), one-third reflect nonneutral tissue expression evolution, with strong purifying selection, maintained over ∼50 Myr. Of these, the majority reflect conserved tissue regulation under strong selective constraints related to brain and neural-related functions, as well as higher-order protein-protein interactions. A small subset of the duplicates have evolved tissue regulatory expression divergence in a common ancestor, which have been subsequently conserved in both lineages, suggestive of adaptive divergence following WGD. These candidates for adaptive tissue expression divergence have elevated rates of protein coding- and promoter-sequence evolution and are enriched for immune- and lipid metabolism ontology terms. Lastly, lineage-specific duplicate divergence points toward underlying differences in adaptive pressures on expression regulation in the nonanadromous grayling versus the anadromous Atlantic salmon. Our findings enhance our understanding of the role of WGD in genome evolution and highlight cases of regulatory divergence of Ss4R duplicates, possibly related to a niche shift in early salmonid evolution.


Subject(s)
Gene Expression Regulation , Genome , Polyploidy , Salmonidae/genetics , Selection, Genetic , Animals , Biological Evolution , Chloride Channels/genetics , Gene Expression , Male
16.
J Pharm Sci ; 104(3): 1197-206, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25546343

ABSTRACT

Recently, we built an in silico model to predict the unbound brain-to-plasma concentration ratio (Kp,uu,brain), a measure of the distribution of a compound between the blood plasma and the brain. Here, we validate the previous model with new additional data points expanding the chemical space and use that data also to renew the model. The model building process was similar to our previous approach; however, a new set of descriptors, molecular signatures, was included to facilitate the model interpretation from a structure perspective. The best consensus model shows better predictive power than the previous model (R(2) = 0.6 vs. R(2) = 0.53, when the same 99 compounds were used as test set). The two-class classification accuracy increased from 76% using the previous model to 81%. Furthermore, the atom-summarized gradient based on molecular signature descriptors was proposed as an interesting new approach to interpret the Kp,uu,brain machine learning model and scrutinize structure Kp,uu,brain relationships for investigated compounds.


Subject(s)
Blood-Brain Barrier/metabolism , Capillary Permeability , Computer Simulation , Models, Biological , Pharmaceutical Preparations/blood , Pharmacokinetics , Animals , Humans , Pharmaceutical Preparations/administration & dosage , Protein Binding , Reproducibility of Results , Support Vector Machine
SELECTION OF CITATIONS
SEARCH DETAIL
...