Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters











Publication year range
1.
Cancer Immunol Immunother ; 72(12): 4145-4159, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37796298

ABSTRACT

BACKGROUND: 4-1BB (CD137) is a co-stimulatory receptor highly expressed on tumor reactive effector T cells and NK cells, which upon stimulation prolongs persistence of tumor reactive effector T and NK cells within the tumor and induces long-lived memory T cells. 4-1BB agonistic antibodies have been shown to induce strong anti-tumor effects that synergize with immune checkpoint inhibitors. The first generation of 4-1BB agonists was, however, hampered by dose-limiting toxicities resulting in suboptimal dose levels or poor agonistic activity. METHODS: ATOR-1017 (evunzekibart), a second-generation Fc-gamma receptor conditional 4-1BB agonist in IgG4 format, was designed to overcome the limitations of the first generation of 4-1BB agonists, providing strong agonistic effect while minimizing systemic immune activation and risk of hepatoxicity. The epitope of ATOR-1017 was determined by X-ray crystallography, and the functional activity was assessed in vitro and in vivo as monotherapy or in combination with anti-PD1. RESULTS: ATOR-1017 binds to a unique epitope on 4-1BB enabling ATOR-1017 to activate T cells, including cells with an exhausted phenotype, and NK cells, in a cross-linking dependent, FcγR-conditional, manner. This translated into a tumor-directed and potent anti-tumor therapeutic effect in vivo, which was further enhanced with anti-PD-1 treatment. CONCLUSIONS: These preclinical data demonstrate a strong safety profile of ATOR-1017, together with its potent therapeutic effect as monotherapy and in combination with anti-PD1, supporting further clinical development of ATOR-1017.


Subject(s)
Neoplasms , T-Lymphocytes , Humans , Receptors, IgG , Antibodies, Monoclonal/therapeutic use , Tumor Necrosis Factor Receptor Superfamily, Member 9 , Epitopes
2.
Mol Cancer Ther ; 22(1): 89-101, 2023 01 03.
Article in English | MEDLINE | ID: mdl-36343381

ABSTRACT

4-1BB (CD137) is an activation-induced costimulatory receptor that regulates immune responses of activated CD8 T and natural killer cells, by enhancing proliferation, survival, cytolytic activity, and IFNγ production. The ability to induce potent antitumor activity by stimulating 4-1BB on tumor-specific cytotoxic T cells makes 4-1BB an attractive target for designing novel immuno-oncology therapeutics. To minimize systemic immune toxicities and enhance activity at the tumor site, we have developed a novel bispecific antibody that stimulates 4-1BB function when co-engaged with the tumor-associated antigen 5T4. ALG.APV-527 was built on the basis of the ADAPTIR bispecific platform with optimized binding domains to 4-1BB and 5T4 originating from the ALLIGATOR-GOLD human single-chain variable fragment library. The epitope of ALG.APV-527 was determined to be located at domain 1 and 2 on 4-1BB using X-ray crystallography. As shown in reporter and primary cell assays in vitro, ALG.APV-527 triggers dose-dependent 4-1BB activity mediated only by 5T4 crosslinking. In vivo, ALG.APV-527 demonstrates robust antitumor responses, by inhibiting growth of established tumors expressing human 5T4 followed by a long-lasting memory immune response. ALG.APV-527 has an antibody-like half-life in cynomolgus macaques and was well tolerated at 50.5 mg/kg. ALG.APV-527 is uniquely designed for 5T4-conditional 4-1BB-mediated antitumor activity with potential to minimize systemic immune activation and hepatotoxicity while providing efficacious tumor-specific responses in a range of 5T4-expressing tumor indications as shown by robust activity in preclinical in vitro and in vivo models. On the basis of the combined preclinical dataset, ALG.APV-527 has potential as a promising anticancer therapeutic for the treatment of 5T4-expressing tumors.


Subject(s)
Antibodies, Bispecific , Neoplasms , Single-Chain Antibodies , Humans , Antibodies, Bispecific/pharmacology , Antibodies, Bispecific/therapeutic use , Antigens, Neoplasm , T-Lymphocytes , Tumor Necrosis Factor Receptor Superfamily, Member 9 , 4-1BB Ligand/metabolism
3.
J Immunother Cancer ; 10(11)2022 11.
Article in English | MEDLINE | ID: mdl-36323431

ABSTRACT

BACKGROUND: Indications with poor T-cell infiltration or deficiencies in T-cell priming and associated unresponsiveness to established immunotherapies represent an unmet medical need in oncology. CD40-targeting therapies designed to enhance antigen presentation, generate new tumor-specific T cells, and activate tumor-infiltrating myeloid cells to remodel the tumor microenvironment, represent a promising opportunity to meet this need. In this study, we present the first in vivo data supporting a role for tumor-associated antigen (TAA)-mediated uptake and cross-presentation of tumor antigens to enhance tumor-specific T-cell priming using CD40×TAA bispecific antibodies, a concept we named Neo-X-Prime. METHODS: Bispecific antibodies targeting CD40 and either of two cell-surface expressed TAA, carcinoembryonic antigen-related cell adhesion molecule 5 (CEA) or epithelial cell adhesion molecule (EpCAM), were developed in a tetravalent format. TAA-conditional CD40 agonism, activation of tumor-infiltrating immune cells, antitumor efficacy and the role of delivery of tumor-derived material such as extracellular vesicles, tumor debris and exosomes by the CD40×TAA bispecific antibodies were demonstrated in vitro using primary human and murine cells and in vivo using human CD40 transgenic mice with different tumor models. RESULTS: The results showed that the CD40×TAA bispecific antibodies induced TAA-conditional CD40 activation both in vitro and in vivo. Further, it was demonstrated in vitro that they induced clustering of tumor debris and CD40-expressing cells in a dose-dependent manner and superior T-cell priming when added to dendritic cells (DC), ovalbumin (OVA)-specific T cells and OVA-containing tumor debris or exosomes. The antitumor activity of the Neo-X-Prime bispecific antibodies was demonstrated to be significantly superior to the monospecific CD40 antibody, and the resulting T-cell dependent antitumor immunity was directed to tumor antigens other than the TAA used for targeting (EpCAM). CONCLUSIONS: The data presented herein support the hypothesis that CD40×TAA bispecific antibodies can engage tumor-derived vesicles containing tumor neoantigens to myeloid cells such as DCs resulting in an improved DC-mediated cross-priming of tumor-specific CD8+ T cells. Thus, this principle may offer therapeutics strategies to enhance tumor-specific T-cell immunity and associated clinical benefit in indications characterized by poor T-cell infiltration or deficiencies in T-cell priming.


Subject(s)
Antibodies, Bispecific , Cross-Priming , Humans , Mice , Animals , Antibodies, Bispecific/pharmacology , Antibodies, Bispecific/therapeutic use , CD8-Positive T-Lymphocytes , Epithelial Cell Adhesion Molecule/metabolism , Dendritic Cells , CD40 Antigens/metabolism , Antigens, Neoplasm
4.
Vaccine ; 37(30): 3957-3960, 2019 07 09.
Article in English | MEDLINE | ID: mdl-31155419

ABSTRACT

Cervical cancer is a global public health problem and human papillomavirus (HPV) 16 accounts for approximately 50% of cases worldwide. Although there are several types of HPV therapeutic vaccines in clinical research, there are currently not approved for use in humans. We developed the fusion protein LALF32-51-E7 (hereafter denominated CIGB550-E7) defined by a cell-penetrating peptide linked to an E7 mutein for the treatment of HPV16-associated tumors. We have demonstrated previously the benefit on antitumor response induced by the immunization with CIGB550-E7 admixed with very small size proteoliposomes (VSSP) adjuvant compared with the adjuvant-free immunization. In this study, we obtained a similar antitumor response in mice immunized with CIGB550-E7 admixed with the new adjuvant sVSSP that does not contain any animal-derived product. Also, the immunization with the above mentioned vaccine preparation induced a cell-mediated immune response. Our results are encouraging for the future clinical trials with the vaccine candidate CIGB550-E7+sVSSP.


Subject(s)
Human papillomavirus 16/pathogenicity , Papillomavirus Infections/immunology , Papillomavirus Infections/prevention & control , Papillomavirus Vaccines/therapeutic use , Adjuvants, Immunologic , Animals , Cell-Penetrating Peptides/chemistry , Female , Human papillomavirus 16/immunology , Humans , Immunity, Cellular/immunology , Immunity, Cellular/physiology , Mice , Mice, Inbred C57BL , Papillomavirus Infections/virology , Papillomavirus Vaccines/immunology , Uterine Cervical Neoplasms/immunology , Uterine Cervical Neoplasms/prevention & control , Uterine Cervical Neoplasms/virology , Vaccination
5.
Clin Exp Metastasis ; 34(3-4): 241-249, 2017 04.
Article in English | MEDLINE | ID: mdl-28417212

ABSTRACT

One important goal of cancer immunotherapy is to prevent and treat tumor metastasis. We have previously reported the significant antitumor effect induced by the immunization with our human papillomavirus therapeutic protein-based vaccine (LALF32-51-E7) without adjuvant and admixed with clinically relevant adjuvants in the subcutaneous TC-1 tumor challenge model. In the present study, we evaluated the efficacy of the above mentioned vaccine formulations in controlling the hematogenous spread of TC-1 tumor cells using a more tumourigenic clone named TC-1* and other intravenous injection site less stressful than the tail vein. We generated a lung metastasis model by injecting TC-1* cells into the retro-orbital venous sinus and this is the first study describing it. Also, this is the first study that demonstrates the efficacy of the immunization with LALF32-51-E7 without adjuvant and admixed with VSSP or Al(OH)3 in controlling metastatic tumors increasing the survival of the mice. Our TC-1 lung metastasis model can be used to test the efficacy of other immunotherapeutic strategies based on E6/E7 antigens.


Subject(s)
Immunotherapy , Lung Neoplasms/secondary , Lung Neoplasms/therapy , Papillomavirus E7 Proteins/immunology , Papillomavirus Vaccines/therapeutic use , Uterine Cervical Neoplasms/therapy , Animals , Female , Genetic Vectors , Humans , Lung Neoplasms/immunology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Proteolipids , T-Lymphocytes, Cytotoxic , Tumor Cells, Cultured , Uterine Cervical Neoplasms/immunology , Uterine Cervical Neoplasms/pathology
6.
FEBS Lett ; 589(23): 3595-603, 2015 Nov 30.
Article in English | MEDLINE | ID: mdl-26497083

ABSTRACT

The Drosophila cadherin-related protein Dachsous (Ds) plays a prominent role in planar cell polarity (PCP) and growth. The regulation of these two processes is based on the interaction between Ds and Fat proteins, generating an intracellular response required for tissue polarization and modulation of Hippo pathway activity. Here we have performed a comprehensive molecular study of the ds gene during larval development that has shown an unexpected complexity in its transcriptional regulation and revealed the expression of hitherto unsuspected transcripts. Also, knockdown of several isoforms provides new evidence on the importance of the cytoplasmic domain in the mechanism of action of Ds during development.


Subject(s)
Cadherins/genetics , Drosophila Proteins/genetics , Drosophila melanogaster/growth & development , Drosophila melanogaster/genetics , Gene Expression Regulation, Developmental , Transcription, Genetic , Animals , Brain/growth & development , Brain/metabolism , Cadherins/chemistry , Cadherins/metabolism , Cell Polarity , Cytoplasm/metabolism , Drosophila Proteins/chemistry , Drosophila Proteins/metabolism , Drosophila melanogaster/cytology , Exons/genetics , Larva/growth & development , Mitochondria/metabolism , Mutation , Phenotype , Protein Isoforms/chemistry , Protein Isoforms/genetics , Protein Isoforms/metabolism , Solubility
7.
FEMS Yeast Res ; 11(7): 575-86, 2011 Nov.
Article in English | MEDLINE | ID: mdl-22093684

ABSTRACT

Pichia pastoris is a highly successful system for the large-scale expression of heterologous proteins, with the added capability of performing most eukaryotic post-translational modifications. However, this system has one significant disadvantage - frequent proteolytic degradation by P. pastoris proteases of heterologously expressed proteins. Several methods have been proposed to address this problem, but none has proven fully effective. We tested the effectiveness of a broad specificity protease inhibitor to control proteolysis. A recombinant variant of the BPTI-Kunitz protease inhibitor ShPI-1 isolated from the sea anemone Stichodactyla helianthus, was expressed in P. pastoris. The recombinant inhibitor (rShPI-1A), containing four additional amino acids (EAEA) at the N-terminus, was folded similarly to the natural inhibitor, as assessed by circular dichroism. rShPI-1A had broad protease specificity, inhibiting serine, aspartic, and cysteine proteases similarly to the natural inhibitor. rShPI-1A protected a model protein, recombinant human miniproinsulin (rhMPI), from proteolytic degradation during expression in P. pastoris. The addition of purified rShPI-1A at the beginning of the induction phase significantly protected rhMPI from proteolysis in culture broth. The results suggest that a broad specificity protease inhibitor such as rShPI-1A can be used to improve the yield of recombinant proteins secreted from P. pastoris.


Subject(s)
Aprotinin/biosynthesis , Gene Expression , Pichia/metabolism , Proinsulin/metabolism , Recombinant Proteins/biosynthesis , Animals , Aprotinin/genetics , Biotechnology/methods , Humans , Metabolic Engineering , Pichia/genetics , Proinsulin/genetics , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sea Anemones/genetics
8.
Stem Cells Dev ; 16(6): 965-78, 2007 Dec.
Article in English | MEDLINE | ID: mdl-18047418

ABSTRACT

Mesenchymal stem cells (MSCs) are multipotent cells that have the capacity to differentiate into various different cell lineages and can generate bone, cartilage and adipose tissue. MSCs are presently characterized using a broad range of different cell-surface markers that are not exclusive to MSCs and not sensitive to culture conditions or differentiation capacity. We show that the integrin subunits alpha10 and alpha11 of the collagen binding integrins alpha10beta1 and alpha11beta1 are expressed by human MSCs in monolayer cultures. We also demonstrate that the expression of alpha10 increases, while alpha1 and alpha11 decrease, during aggregate culture of MSCs in chondrogenic medium. Alpha10beta1 is expressed by chondrocytes in cartilage, whereas alpha11beta1 integrins are predominantly expressed by subsets of the fibroblastic lineage. In extensive monolayer cultures of MSCs, alpha10 expression is down-regulated. We show that this down-regulation is reversed by fibroblast growth factor-2 (FGF-2) treatment. Addition of FGF-2 to MSCs not only results in increased alpha10 expression, but also in decreased alpha11 expression. FGF-2 treatment of MSCs has been shown to keep the cells more multipotent and also induces cell proliferation and Sox-9 up-regulation. We demonstrate improved chondrogenecity as well as increased collagen-dependant migratory potential of FGF-2-treated MSCs having a high alpha10 expression. We also demonstrate expression of alpha10 and alpha11 integrin subunits in the endosteum and periosteum of mice, but very low or not detectable expression levels in freshly aspired human or mouse BM. We show that MSCs with high chondrogenic differentiation potential are highly alpha10 positive and propose alpha10 as a potential marker to predict the differentiation state of MSCs.


Subject(s)
Cell Differentiation/physiology , Chondrocytes/cytology , Fibroblast Growth Factor 2/pharmacology , Integrin alpha Chains/genetics , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/physiology , Cell Movement , Collagen/physiology , Flow Cytometry , Gene Expression Regulation/drug effects , Growth Substances/pharmacology , Humans , Mesenchymal Stem Cells/drug effects , Polymerase Chain Reaction , Up-Regulation
9.
Biochem Biophys Res Commun ; 342(2): 625-31, 2006 Apr 07.
Article in English | MEDLINE | ID: mdl-16488393

ABSTRACT

Development of heterologous systems to produce useful HCV vaccine candidates is an important part of HCV research. In this study different HCV structural region variants were designed to express the first 120 aa, 176 aa, 339 aa, and 650 aa of HCV polyprotein, and aa 384 to 521, or aa 384-605 or aa 384-746 of HCV E2 protein fused to the leader sequence of sucrose invertase 2 allowing the secretion of recombinant E2 proteins. Low expression levels were observed for HCV core protein (HCcAg) variants expressing the first 120 aa and 176 aa (HCcAg.120 and HCcAg.176, respectively). Higher expression levels were observed when HCcAg was expressed as a polypeptide with either E1 or E1 and E2 proteins. In addition, HCcAg was processed to produce two antigenic bands with 21 and 23kDa (P21 and P23, respectively) when expressed as a polypeptide with HCV E1 and E2 proteins. Results also suggest E1 processing in the context of HCcAg.E1.E2 polyprotein. On the other hand, E2.521, E2.605, and E2.680 were efficiently excreted to the culture medium. However, the entire E2.746 variant predominantly localized in the insoluble fraction of ruptured cells. Results suggest that the hydrophobic C-terminal E2 region from aa 681 to 746 is critical for intracellular retention of recombinant E2.746 protein in Pichia pastoris cells. Endo H or PNGase F treatment suggests that E2.746 was modified with high-mannose type oligosaccharides in P. pastoris. These data justify the usefulness of P. pastoris expression system to express HCV structural viral proteins which may be useful targets for HCV vaccine candidates.


Subject(s)
Cloning, Molecular , Hepacivirus/genetics , Pichia/genetics , Protein Processing, Post-Translational , Viral Structural Proteins/genetics , Antigens, Viral/biosynthesis , Antigens, Viral/genetics , Hepacivirus/metabolism , Hepatitis C Antigens/biosynthesis , Hepatitis C Antigens/genetics , Hepatitis C Antigens/metabolism , Viral Core Proteins/biosynthesis , Viral Core Proteins/genetics , Viral Core Proteins/metabolism , Viral Envelope Proteins/biosynthesis , Viral Envelope Proteins/genetics , Viral Envelope Proteins/metabolism , Viral Structural Proteins/biosynthesis , Viral Structural Proteins/metabolism
10.
Biotechnol Lett ; 27(5): 339-45, 2005 Mar.
Article in English | MEDLINE | ID: mdl-15834796

ABSTRACT

We have found a direct relationship between protein production in Pichia pastoris and the number of introduced synthetic genes of miniproinsulin (MPI), fused to the Saccharomyces cerevisiae pre-pro alpha factor used as secretion signal, and inserted between the alcohol oxidase 1 (AOX1) promoter and terminator sequences. Two consecutive approaches were followed to increase the number of integrated cassettes: the head-to-tail expression cassette multimerization procedure and re-transformation with a dominant selection marker. This increased expression from 19 to 250 mg l(-1) when about 11 copies have been integrated. Further, the correct position of one of the disulphide bridges of the purified molecule was verified by digestion with Glu-C endoprotease, followed by mass spectrometry of the isolated fragments.


Subject(s)
Biotechnology/methods , Genetic Techniques , Pichia/metabolism , Proinsulin/genetics , Proinsulin/metabolism , Alcohol Oxidoreductases/genetics , Amino Acid Sequence , Cloning, Molecular , Disulfides/chemistry , Electrophoresis, Polyacrylamide Gel , Fermentation , Gene Dosage , Genetic Vectors , Humans , Kinetics , Mass Spectrometry , Molecular Sequence Data , Peptide Mapping , Peptides/chemistry , Plasmids/metabolism , Promoter Regions, Genetic , Saccharomyces cerevisiae/metabolism , Serine Endopeptidases/metabolism , Time Factors
11.
Exp Mol Pathol ; 75(3): 248-55, 2003 Dec.
Article in English | MEDLINE | ID: mdl-14611816

ABSTRACT

A preformed gelatin matrix containing adherent rat colon carcinoma cells was transplanted subcutaneously into rats to analyze the outgrowth of the tumor and the inflammatory response. The gelatin matrix simplifies the precise localization of the tumor cells early after implantation and allows the gelatin piece with a growing tumor to be dissected for analysis in vitro, after various times in vivo. The immortalized mesenchymal progenitor cell line MPC1cE was cocultured with rat colon carcinoma cells in vivo in gelatin matrix. The mesenchymal progenitor cells inhibited the outgrowth of the rat colon carcinoma and a complete inhibition was seen if the number of mesenchymal progenitor cells were at least equal to the number of tumor cells. The mixture of tumor cells and mesenchymal progenitor cells induced more infiltration of monocytes and granulocytes than tumor cells or mesenchymal progenitor cells alone. Infiltration of T cells and CD31+ endothelial cells correlated to the presence of tumor cells and not to mesenchymal progenitor cells. These findings suggest that tumor cell culture in vivo in a gelatin matrix is effective for early localization of tumor cells in vivo and that mesenchymal progenitor cells effectively inhibit the growth of the tumor cells in vivo.


Subject(s)
Gelatin , Mesenchymal Stem Cell Transplantation/methods , Mesenchymal Stem Cells/physiology , Animals , Cell Survival , Coculture Techniques , Colonic Neoplasms/metabolism , Extracellular Matrix , Immunohistochemistry , Neoplasm Transplantation/methods , Rats , Tumor Cells, Cultured
12.
Biotechnol Lett ; 25(3): 251-5, 2003 Feb.
Article in English | MEDLINE | ID: mdl-12882580

ABSTRACT

An unstructured model based on mass balance equations for a recombinant methylotrophic yeast Pichia pastoris MutS (Methanol Utilization Slow) strain expressing the mini-proinsulin (MPI), was successfully established in quasi-steady state fed-batch fermentations with varying total quantity of biomass in a 7 l fermenter. The model describes the relationships between the total biomass and induction time, both in the batch and fed-batch phases. In addition, good correlations were obtained when the total quantity of MPI was correlated with the total biomass, demonstrating that the product of interest is associated with growth in the methanol phase. The parameters of the fermentation model obtained are similar to those reported by other researchers.


Subject(s)
Models, Biological , Oxidoreductases/metabolism , Pichia/growth & development , Pichia/metabolism , Proinsulin/biosynthesis , Biomass , Bioreactors/microbiology , Computer Simulation , Mitochondrial Proteins , Pichia/classification , Pichia/genetics , Plant Proteins , Proinsulin/genetics , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL