Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
1.
Nat Prod Res ; : 1-8, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38829280

ABSTRACT

The rise of antibiotic-resistant bacterial strains represents an important challenge for global health, underscoring the critical need for innovative strategies to confront this threat. Natural products and their derivatives have emerged as a promising reservoir for drug discovery. The social amoeba Dictyostelium discoideum is a potent model organism in this effort. Employing this invertebrate model, we introduce a novel perspective to investigate natural plant extracts in search of molecules with potential antivirulence activity. Our work established an easy-scalable developmental assay targeting a virulent strain of Klebsiella pneumoniae, with Helenium aromaticum as the representative plant. The main objective was to identify tentative compounds from the Helenium aromaticum extract that attenuate the virulence of K. pneumoniae virulence without inducing cytotoxic effects on amoeba cells. Notably, the methanolic root extract of H. aromaticum fulfilled these prerequisites compared to the dichloromethane extract. Using UHPLC Q/Orbitrap/ESI/MS/MS, 63 compounds were tentatively identified in both extracts, 47 in the methanolic and 29 in the dichloromethane, with 13 compounds in common. This research underscores the potential of employing D. discoideum-assisted pharmacognosy to discover new antivirulence agents against multidrug-resistant pathogens.

2.
ACS Infect Dis ; 10(2): 606-623, 2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38205780

ABSTRACT

The emergence of hypervirulent Klebsiella pneumoniae (hvKP) strains poses a significant threat to public health due to high mortality rates and propensity to cause severe community-acquired infections in healthy individuals. The ability to form biofilms and produce a protective capsule contributes to its enhanced virulence and is a significant challenge to effective antibiotic treatment. Polyphosphate kinase 1 (PPK1) is an enzyme responsible for inorganic polyphosphate synthesis and plays a vital role in regulating various physiological processes in bacteria. In this study, we investigated the impact of polyP metabolism on the biofilm and capsule formation and virulence traits in hvKP using Dictyostelium discoideum amoeba as a model host. We found that the PPK1 null mutant was impaired in biofilm and capsule formation and showed attenuated virulence in D. discoideum compared to the wild-type strain. We performed a proteomic analysis to gain further insights into the underlying molecular mechanism. The results revealed that the PPK1 mutant had a differential expression of proteins involved in capsule synthesis (Wzi-Ugd), biofilm formation (MrkC-D-H), synthesis of the colibactin genotoxin precursor (ClbB), as well as proteins associated with the synthesis and modification of lipid A (ArnB-LpxC-PagP). These proteomic findings corroborate the phenotypic observations and indicate that the PPK1 mutation is associated with impaired biofilm and capsule formation and attenuated virulence in hvKP. Overall, our study highlights the importance of polyP synthesis in regulating extracellular biomolecules and virulence in K. pneumoniae and provides insights into potential therapeutic targets for treating K. pneumoniae infections.


Subject(s)
Dictyostelium , Klebsiella pneumoniae , Humans , Virulence , Klebsiella pneumoniae/genetics , Polyphosphates , Proteomics , Biofilms
3.
Microorganisms ; 11(11)2023 Nov 20.
Article in English | MEDLINE | ID: mdl-38004830

ABSTRACT

Salar de Ascotán is a high-altitude arsenic-rich salt flat exposed to high ultraviolet radiation in the Atacama Desert, Chile. It hosts unique endemic flora and fauna and is an essential habitat for migratory birds, making it an important site for conservation and protection. However, there is limited information on the resident microbiota's diversity, genomic features, metabolic potential, and molecular mechanisms that enable it to thrive in this extreme environment. We used long- and short-read metagenomics to investigate the microbial communities in Ascotán's water, sediment, and soil. Bacteria predominated, mainly Pseudomonadota, Acidobacteriota, and Bacteroidota, with a remarkable diversity of archaea in the soil. Following hybrid assembly, we recovered high-quality bacterial (101) and archaeal (6) metagenome-assembled genomes (MAGs), including representatives of two putative novel families of Patescibacteria and Pseudomonadota and two novel orders from the archaeal classes Halobacteriota and Thermoplasmata. We found different metabolic capabilities across distinct lineages and a widespread presence of genes related to stress response, DNA repair, and resistance to arsenic and other metals. These results highlight the remarkable diversity and taxonomic novelty of the Salar de Ascotán microbiota and its rich functional repertoire, making it able to resist different harsh conditions. The highly complete MAGs described here could serve future studies and bioprospection efforts focused on salt flat extremophiles, and contribute to enriching databases with microbial genome data from underrepresented regions of our planet.

4.
Microbiol Spectr ; : e0039923, 2023 Sep 14.
Article in English | MEDLINE | ID: mdl-37707451

ABSTRACT

Multidrug- and carbapenem-resistant Klebsiella pneumoniae (CR-Kp) are critical threats to global health and key traffickers of resistance genes to other pathogens. Despite the sustained increase in CR-Kp infections in Chile, few strains have been described at the genomic level, lacking details of their resistance and virulence determinants and the mobile elements mediating their dissemination. In this work, we studied the antimicrobial susceptibility and performed a comparative genomic analysis of 10 CR-Kp isolates from the Chilean surveillance of carbapenem-resistant Enterobacteriaceae. High resistance was observed among the isolates (five ST25, three ST11, one ST45, and one ST505), which harbored 44 plasmids, most carrying genes for conjugation and resistance to several antibiotics and biocides. Ten plasmids encoding carbapenemases were characterized, including novel plasmids or variants with additional resistance genes, a novel genetic environment for blaKPC-2, and plasmids widely disseminated in South America. ST25 K2 isolates belonging to CG10224, a clone traced back to 2012 in Chile, which recently acquired blaNDM-1, blaNDM-7, or blaKPC-2 plasmids stood out as high-risk clones. Moreover, this corresponds to the first report of ST25 and ST45 Kp producing NDM-7 in South America and ST505 CR-Kp producing both NDM-7 and KPC-2 worldwide. Also, we characterized a variety of genomic islands carrying virulence and fitness factors. These results provide baseline knowledge for a detailed understanding of molecular and genetic determinants behind antibiotic resistance and virulence of CR-Kp in Chile and South America. IMPORTANCE In the ongoing antimicrobial resistance crisis, carbapenem-resistant strains of Klebsiella pneumoniae are critical threats to public health. Besides globally disseminated clones, the burden of local problem clones remains substantial. Although genomic analysis is a powerful tool for improving pathogen and antimicrobial resistance surveillance, it is still restricted in low- to middle-income countries, including Chile, causing them to be underrepresented in genomic databases and epidemiology surveys. This study provided the first 10 complete genomes of the Chilean surveillance for carbapenem-resistant K. pneumoniae in healthcare settings, unveiling their resistance and virulence determinants and the mobile genetic elements mediating their dissemination, placed in the South American and global K. pneumoniae epidemiological context. We found ST25 with K2 capsule as an emerging high-risk clone, along with other lineages producing two carbapenemases and several other resistance and virulence genes encoded in novel plasmids and genomic islands.

5.
Biol Res ; 56(1): 6, 2023 Feb 17.
Article in English | MEDLINE | ID: mdl-36797803

ABSTRACT

BACKGROUND: Despite representing the largest fraction of animal life, the number of insect species whose genome has been sequenced is barely in the hundreds. The order Dermaptera (the earwigs) suffers from a lack of genomic information despite its unique position as one of the basally derived insect groups and its importance in agroecosystems. As part of a national educational and outreach program in genomics, a plan was formulated to engage the participation of high school students in a genome sequencing project. Students from twelve schools across Chile were instructed to capture earwig specimens in their geographical area, to identify them and to provide material for genome sequencing to be carried out by themselves in their schools. RESULTS: The school students collected specimens from two cosmopolitan earwig species: Euborellia annulipes (Fam. Anisolabididae) and Forficula auricularia (Fam. Forficulidae). Genomic DNA was extracted and, with the help of scientific teams that traveled to the schools, was sequenced using nanopore sequencers. The sequence data obtained for both species was assembled and annotated. We obtained genome sizes of 1.18 Gb (F. auricularia) and 0.94 Gb (E. annulipes) with the number of predicted protein coding genes being 31,800 and 40,000, respectively. Our analysis showed that we were able to capture a high percentage (≥ 93%) of conserved proteins indicating genomes that are useful for comparative and functional analysis. We were also able to characterize structural elements such as repetitive sequences and non-coding RNA genes. Finally, functional categories of genes that are overrepresented in each species suggest important differences in the process underlying the formation of germ cells, and modes of reproduction between them, features that are one of the distinguishing biological properties that characterize these two distant families of Dermaptera. CONCLUSIONS: This work represents an unprecedented instance where the scientific and lay community have come together to collaborate in a genome sequencing project. The versatility and accessibility of nanopore sequencers was key to the success of the initiative. We were able to obtain full genome sequences of two important and widely distributed species of insects which had not been analyzed at this level previously. The data made available by the project should illuminate future studies on the Dermaptera.


Subject(s)
Insecta , Animals , Insecta/genetics , Sequence Analysis, DNA , Chile
6.
Biol. Res ; 56: 6-6, 2023. ilus, tab, graf
Article in English | LILACS | ID: biblio-1429907

ABSTRACT

BACKGROUND: Despite representing the largest fraction of animal life, the number of insect species whose genome has been sequenced is barely in the hundreds. The order Dermaptera (the earwigs) suffers from a lack of genomic information despite its unique position as one of the basally derived insect groups and its importance in agroecosystems. As part of a national educational and outreach program in genomics, a plan was formulated to engage the participation of high school students in a genome sequencing project. Students from twelve schools across Chile were instructed to capture earwig specimens in their geographical area, to identify them and to provide material for genome sequencing to be carried out by themselves in their schools. RESULTS: The school students collected specimens from two cosmopolitan earwig species: Euborellia annulipes (Fam. Anisolabididae) and Forficula auricularia (Fam. Forficulidae). Genomic DNA was extracted and, with the help of scientific teams that traveled to the schools, was sequenced using nanopore sequencers. The sequence data obtained for both species was assembled and annotated. We obtained genome sizes of 1.18 Gb (F. auricularia) and 0.94 Gb (E. annulipes) with the number of predicted protein coding genes being 31,800 and 40,000, respectively. Our analysis showed that we were able to capture a high percentage (≥ 93%) of conserved proteins indicating genomes that are useful for comparative and functional analysis. We were also able to characterize structural elements such as repetitive sequences and non-coding RNA genes. Finally, functional categories of genes that are overrepresented in each species suggest important differences in the process underlying the formation of germ cells, and modes of reproduction between them, features that are one of the distinguishing biological properties that characterize these two distant families of Dermaptera. CONCLUSIONS: This work represents an unprecedented instance where the scientific and lay community have come together to collaborate in a genome sequencing project. The versatility and accessibility of nanopore sequencers was key to the success of the initiative. We were able to obtain full genome sequences of two important and widely distributed species of insects which had not been analyzed at this level previously. The data made available by the project should illuminate future studies on the Dermaptera.


Subject(s)
Animals , Insecta/genetics , Chile , Sequence Analysis, DNA
7.
Sci Total Environ ; 810: 152003, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-34856283

ABSTRACT

The rise of multiresistant bacterial pathogens is currently one of the most critical threats to global health, encouraging a better understanding of the evolution and spread of antimicrobial resistance. In this regard, the role of the environment as a source of resistance mechanisms remains poorly understood. Moreover, we still know a minimal part of the microbial diversity and resistome present in remote and extreme environments, hosting microbes that evolved to resist harsh conditions and thus a potentially rich source of novel resistance genes. This work demonstrated that the Antarctic Peninsula soils host a remarkable microbial diversity and a widespread presence of autochthonous antibiotic-resistant bacteria and resistance genes. We observed resistance to a wide array of antibiotics among isolates, including Pseudomonas resisting ten or more different compounds, with an overall increased resistance in bacteria from non-intervened areas. In addition, genome analysis of selected isolates showed several genes encoding efflux pumps, as well as a lack of known resistance genes for some of the resisted antibiotics, including colistin, suggesting novel uncharacterized mechanisms. By combining metagenomic approaches based on analyzing raw reads, assembled contigs, and metagenome-assembled genomes, we found hundreds of widely distributed genes potentially conferring resistance to different antibiotics (including an outstanding variety of inactivation enzymes), metals, and biocides, hosted mainly by Polaromonas, Pseudomonas, Streptomyces, Variovorax, and Burkholderia. Furthermore, a proportion of these genes were found inside predicted plasmids and other mobile elements, including a putative OXA-like carbapenemase from Polaromonas harboring conserved key residues and predicted structural features. All this evidence indicates that the Antarctic Peninsula soil microbiota has a broad natural resistome, part of which could be transferred horizontally to pathogenic bacteria, acting as a potential source of novel resistance genes.


Subject(s)
Microbiota , Soil , Antarctic Regions , Anti-Bacterial Agents , Genes, Bacterial , Metagenome , Metagenomics , Microbiota/genetics
8.
Front Immunol ; 12: 769059, 2021.
Article in English | MEDLINE | ID: mdl-34745145

ABSTRACT

The prognosis of severe COVID-19 patients has motivated research communities to uncover mechanisms of SARS-CoV-2 pathogenesis also on a regional level. In this work, we aimed to understand the immunological dynamics of severe COVID-19 patients with different degrees of illness, and upon long-term recovery. We analyzed immune cellular subsets and SARS-CoV-2-specific antibody isotypes of 66 COVID-19 patients admitted to the Hospital Clínico Universidad de Chile, which were categorized according to the WHO ten-point clinical progression score. These included 29 moderate patients (score 4-5) and 37 severe patients under either high flow oxygen nasal cannula (18 patients, score 6), or invasive mechanical ventilation (19 patients, score 7-9), plus 28 convalescent patients and 28 healthy controls. Furthermore, six severe patients that recovered from the disease were longitudinally followed over 300 days. Our data indicate that severe COVID-19 patients display increased frequencies of plasmablasts, activated T cells and SARS-CoV-2-specific antibodies compared to moderate and convalescent patients. Remarkably, within the severe COVID-19 group, patients rapidly progressing into invasive mechanical ventilation show higher frequencies of plasmablasts, monocytes, eosinophils, Th1 cells and SARS-CoV-2-specific IgG than patients under high flow oxygen nasal cannula. These findings demonstrate that severe COVID-19 patients progressing into invasive mechanical ventilation show a distinctive type of immunity. In addition, patients that recover from severe COVID-19 begin to regain normal proportions of immune cells 100 days after hospital discharge and maintain high levels of SARS-CoV-2-specific IgG throughout the study, which is an indicative sign of immunological memory. Thus, this work can provide useful information to better understand the diverse outcomes of severe COVID-19 pathogenesis.


Subject(s)
COVID-19/immunology , Eosinophils/immunology , Plasma Cells/immunology , SARS-CoV-2/physiology , Th1 Cells/immunology , Aged , Antibodies, Viral/blood , Convalescence , Disease Progression , Female , Humans , Immunity, Cellular , Immunoglobulin G/blood , Immunologic Memory , Male , Middle Aged , Severity of Illness Index
9.
Front Microbiol ; 11: 405, 2020.
Article in English | MEDLINE | ID: mdl-32265865

ABSTRACT

One of the approaches to address cancer treatment is to develop new drugs not only to obtain compounds with less side effects, but also to have a broader set of alternatives to tackle the resistant forms of this pathology. In this regard, growing evidence supports the use of bacteria-derived peptides such as bacteriocins, which have emerged as promising anti-cancer molecules. In addition to test the activity of these molecules on cancer cells in culture, their in vivo antitumorigenic properties must be validated in animal models. Although the standard approach for such assays employs experiments in nude mice, at the initial stages of testing, the use of high-throughput animal models would permit rapid proof-of-concept experiments, screening a high number of compounds, and thus increasing the possibilities of finding new anti-cancer molecules. A validated and promising alternative animal model are zebrafish larvae harboring xenografts of human cancer cells. Here, we addressed the anti-cancer properties of the antibacterial peptide microcin E492 (MccE492), a bacteriocin produced by Klebsiella pneumoniae, showing that this peptide has a marked cytotoxic effect on human colorectal cancer cells in vitro. Furthermore, we developed a zebrafish xenograft model using these cells to test the antitumor effect of MccE492 in vivo, demonstrating that intratumor injection of this peptide significantly reduced the tumor cell mass. Our results provide, for the first time, evidence of the in vivo antitumoral properties of a bacteriocin tested in an animal model. This evidence strongly supports the potential of this bacteriocin for the development of novel anti-cancer therapies.

10.
Infect Drug Resist ; 12: 2237-2242, 2019.
Article in English | MEDLINE | ID: mdl-31413600

ABSTRACT

Inorganic polyphosphate (polyP) and its metabolic enzymes are important in several cellular processes related with virulence and antibiotic susceptibility. Accordingly, bacterial polyP synthesis has been proposed as a good target for designing novel antivirulence molecules as alternative to conventional antibiotics. In most pathogenic bacteria, polyphosphate kinase 1 (PPK1), in charge of polyP synthesis from ATP, is widely conserved. Current colorimetric and radioactive polyP synthesis enzymatic assays are not suitable for high-throughput screening of PPK1 inhibitors. Given the ability of polyP to modify the excitation-emission spectra of DAPI (4'-6-diamidino-2-phenylindole), a fluorescence assay was previously developed by using a purified recombinant PPK1 enzyme from Escherichia coli. In this work we have developed a suitable methodology for high-throughput measurement of E. coli PPK1 activity. This platform can be used for the screening putative antimicrobial molecules for related enteropathogenic bacteria.

11.
Methods Mol Biol ; 1918: 183-190, 2019.
Article in English | MEDLINE | ID: mdl-30580409

ABSTRACT

Important features of host-pathogen interactions have been discovered using nonmammalian hosts. Therefore, model organisms such as the nematode Caenorhabditis elegans, the social amoeba Dictyostelium discoideum, and zebrafish ( Danio rerio ) have been increasingly used for studying bacterial pathogenesis in vivo. These host models are amenable for live cell imaging studies, which can also benefit from online resources and databases ( Dictybase.org , ZFIN.org , Wormbase.org ), as well as from a wide repertoire of genetic and genomic tools generated over the years by the scientific community. Here, we present the protocols we developed to study bacterial dynamics within infected embryonic zebrafish. This chapter describes detailed methods to achieve infections of zebrafish larvae with the foodborne pathogen Salmonella enterica serovar Typhimurium, including embryonic zebrafish spawning and maintenance, bacterial inoculation through intravenous injections and static immersion, followed by fluorescence imaging of infected transgenic zebrafish. Methods for studying bacterial dynamics within zebrafish larvae through live cell imaging are also described.


Subject(s)
Cell Tracking , Foodborne Diseases/microbiology , Zebrafish/microbiology , Animals , Bacterial Infections/microbiology , Bacterial Load , Cell Tracking/methods , Data Analysis , Disease Models, Animal , Gene Expression , Genes, Reporter , Larva/microbiology , Macrophages/microbiology , Neutrophils/microbiology
12.
Article in English | MEDLINE | ID: mdl-29441327

ABSTRACT

Inorganic polyphosphate (polyP) deficiency in enteric bacterial pathogens reduces their ability to invade and establish systemic infections in different hosts. For instance, inactivation of the polyP kinase gene (ppk) encoding the enzyme responsible for polyP biosynthesis reduces invasiveness and intracellular survival of Salmonella enterica serovar Typhimurium (S. Typhimurium) in epithelial cells and macrophages in vitro. In addition, the virulence in vivo of a S. Typhimurium Δppk mutant is significantly reduced in a murine infection model. In spite of these observations, the role played by polyP during the Salmonella-host interaction is not well understood. The social amoeba Dictyostelium discoideum has proven to be a useful model for studying relevant aspects of the host-pathogen interaction. In fact, many intracellular pathogens can survive within D. discoideum cells using molecular mechanisms also required to survive within macrophages. Recently, we established that S. Typhimurium is able to survive intracellularly in D. discoideum and identified relevant genes linked to virulence that are crucial for this process. The aim of this study was to determine the effect of a polyP deficiency in S. Typhimurium during its interaction with D. discoideum. To do this, we evaluated the intracellular survival of wild-type and Δppk strains of S. Typhimurium in D. discoideum and the ability of these strains to delay the social development of the amoeba. In contrast to the wild-type strain, the Δppk mutant was unable to survive intracellularly in D. discoideum and enabled the social development of the amoeba. Both phenotypes were complemented using a plasmid carrying a copy of the ppk gene. Next, we simultaneously evaluated the proteomic response of both S. Typhimurium and D. discoideum during host-pathogen interaction via global proteomic profiling. The analysis of our results allowed the identification of novel molecular signatures that give insight into Salmonella-Dictyostelium interaction. Altogether, our results indicate that inorganic polyP is essential for S. Typhimurium virulence and survival in D. discoideum. In addition, we have validated the use of global proteomic analyses to simultaneously evaluate the host-pathogen interaction of S. Typhimurium and D. discoideum. Furthermore, our infection assays using these organisms can be exploited to screen for novel anti-virulence molecules targeting inorganic polyP biosynthesis.


Subject(s)
Dictyostelium/microbiology , Host-Pathogen Interactions , Polyphosphates/metabolism , Salmonella typhimurium/metabolism , Salmonella typhimurium/pathogenicity , Animals , Mass Spectrometry , Mutation , Phosphotransferases (Phosphate Group Acceptor)/genetics , Phosphotransferases (Phosphate Group Acceptor)/metabolism , Proteomics/methods , Salmonella Infections, Animal , Salmonella typhimurium/genetics , Virulence/genetics
13.
Article in English | MEDLINE | ID: mdl-29479519

ABSTRACT

Multiresistant and invasive hypervirulent Klebsiella pneumoniae strains have become one of the most urgent bacterial pathogen threats. Recent analyses revealed a high genomic plasticity of this species, harboring a variety of mobile genetic elements associated with virulent strains, encoding proteins of unknown function whose possible role in pathogenesis have not been addressed. K. pneumoniae virulence has been studied mainly in animal models such as mice and pigs, however, practical, financial, ethical and methodological issues limit the use of mammal hosts. Consequently, the development of simple and cost-effective experimental approaches with alternative host models is needed. In this work we described the use of both, the social amoeba and professional phagocyte Dictyostelium discoideum and the fish Danio rerio (zebrafish) as surrogate host models to study K. pneumoniae virulence. We compared three K. pneumoniae clinical isolates evaluating their resistance to phagocytosis, intracellular survival, lethality, intestinal colonization, and innate immune cells recruitment. Optical transparency of both host models permitted studying the infective process in vivo, following the Klebsiella-host interactions through live-cell imaging. We demonstrated that K. pneumoniae RYC492, but not the multiresistant strains 700603 and BAA-1705, is virulent to both host models and elicits a strong immune response. Moreover, this strain showed a high resistance to phagocytosis by D. discoideum, an increased ability to form biofilms and a more prominent and irregular capsule. Besides, the strain 700603 showed the unique ability to replicate inside amoeba cells. Genomic comparison of the K. pneumoniae strains showed that the RYC492 strain has a higher overall content of virulence factors although no specific genes could be linked to its phagocytosis resistance, nor to the intracellular survival observed for the 700603 strain. Our results indicate that both zebrafish and D. discoideum are advantageous host models to study different traits of K. pneumoniae that are associated with virulence.


Subject(s)
Host-Pathogen Interactions , Klebsiella Infections/microbiology , Klebsiella pneumoniae/physiology , Animals , Bacterial Load , Behavior, Animal , Biofilms , Dictyostelium , Disease Resistance , Host-Pathogen Interactions/immunology , Klebsiella Infections/immunology , Klebsiella pneumoniae/pathogenicity , Microbial Viability , Neutrophils/immunology , Neutrophils/microbiology , Phagocytosis/immunology , Virulence/genetics , Virulence Factors/genetics , Zebrafish
14.
mBio ; 8(5)2017 10 10.
Article in English | MEDLINE | ID: mdl-29018118

ABSTRACT

The dynamic response of organisms exposed to environmental pathogens determines their survival or demise, and the outcome of this interaction depends on the host's susceptibility and pathogen-dependent virulence factors. The transmission of acquired information about the nature of a pathogen to progeny may ensure effective defensive strategies for the progeny's survival in adverse environments. Environmental RNA interference (RNAi) is a systemic and heritable mechanism and has recently been linked to antibacterial and antifungal defenses in both plants and animals. Here, we report that the second generation of Caenorhabditis elegans living on pathogenic bacteria can avoid bacterial infection by entering diapause in an RNAi pathway-dependent mechanism. Furthermore, we demonstrate that the information encoding this survival strategy is transgenerationally transmitted to the progeny via the maternal germ line.IMPORTANCE Bacteria vastly influence physiology and behavior, and yet, the specific mechanisms by which they cause behavioral changes in hosts are not known. We use C. elegans as a host and the bacteria they eat to understand how microbes trigger a behavioral change that helps animals to survive. We found that animals faced with an infection for two generations could enter a hibernationlike state, arresting development by forming dauer larvae. Dauers have closed mouths and effectively avoid infection. Animals accumulate information that is transgenerationally transmitted to the next generations to form dauers. This work gives insight on how bacteria communicate in noncanonical ways with their hosts, resulting in long-lasting effects providing survival strategies to the community.


Subject(s)
Bacteria/pathogenicity , Caenorhabditis elegans/microbiology , Caenorhabditis elegans/physiology , Diapause , RNA Interference , Animals , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/physiology , Larva/physiology , RNA, Small Interfering/genetics , Signal Transduction
15.
Article in English | MEDLINE | ID: mdl-28791256

ABSTRACT

The outcome of a host-pathogen interaction is determined by the conditions of the host, the pathogen, and the environment. Although numerous proteomic studies of in vitro-grown microbial pathogens have been performed, in vivo proteomic approaches are still rare. In addition, increasing evidence supports that in vitro studies inadequately reflect in vivo conditions. Choosing the proper host is essential to detect the expression of proteins from the pathogen in vivo. Numerous studies have demonstrated the suitability of zebrafish (Danio rerio) embryos as a model to in vivo studies of Pseudomonas aeruginosa infection. In most zebrafish-pathogen studies, infection is achieved by microinjection of bacteria into the larvae. However, few reports using static immersion of bacterial pathogens have been published. In this study we infected 3 days post-fertilization (DPF) zebrafish larvae with P. aeruginosa PAO1 by immersion and injection and tracked the in vivo immune response by the zebrafish. Additionally, by using non-isotopic (Q-exactive) metaproteomics we simultaneously evaluated the proteomic response of the pathogen (P. aeruginosa PAO1) and the host (zebrafish). We found some zebrafish metabolic pathways, such as hypoxia response via HIF activation pathway, were exclusively enriched in the larvae exposed by static immersion. In contrast, we found that inflammation mediated by chemokine and cytokine signaling pathways was exclusively enriched in the larvae exposed by injection, while the integrin signaling pathway and angiogenesis were solely enriched in the larvae exposed by immersion. We also found important virulence factors from P. aeruginosa that were enriched only after exposure by injection, such as the Type-III secretion system and flagella-associated proteins. On the other hand, P. aeruginosa proteins involved in processes like biofilm formation, and cellular responses to antibiotic and starvation were enriched exclusively after exposure by immersion. We demonstrated the suitability of zebrafish embryos as a model for in vivo host-pathogen based proteomic studies in P. aeruginosa. Our global proteomic profiling identifies novel molecular signatures that give systematic insight into zebrafish-Pseudomonas interaction.


Subject(s)
Bacterial Proteins/analysis , Fish Proteins/analysis , Host-Pathogen Interactions , Proteome/analysis , Pseudomonas Infections/microbiology , Pseudomonas aeruginosa/growth & development , Zebrafish/microbiology , Animals , Disease Models, Animal , Larva/microbiology , Proteomics
16.
Data Brief ; 12: 13-17, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28373998

ABSTRACT

Here, we provide the dataset associated with our research article on the polyphosphate metabolism entitled, "Multi-level evaluation of Escherichia coli polyphosphate related mutants using global transcriptomic, proteomic and phenomic analyses". By integrating different omics levels (transcriptome, proteome and phenome), we were able to study Escherichia coli polyphosphate mutant strains (Δppk1, Δppx, and Δppk1-ppx). We have compiled here all datasets from DNA microarrys, q-proteomic (Isotope-Coded Protein Labeling, ICPL) and phenomic (Phenotype microarray) raw data we have obtained in all polyP metabolism mutants.

17.
Microb Pathog ; 107: 317-320, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28400130

ABSTRACT

Pathogenic Salmonella strains have a set of virulence factors allowing them to generate systemic infections and damage in a variety of hosts. Among these factors, bacterial proteins secreted by specialized systems are used to penetrate the host's intestinal mucosa, through the invasion and destruction of specialized epithelial M cells in the intestine. On the other hand, numerous studies have demonstrated that humans, as well as experimental animal hosts, respond to Salmonella infection by activating both innate and adaptive immune responses. Here, through live cell imaging of S. Typhimurium infection of zebrafish larvae, we showed that besides the intestinal colonization, a deformed cloacae region and a concomitant accumulation of S. Typhimurium cells was observed upon bacterial infection. The swelling led to a persistent inflammation of infected larvae, although the infection was non-lethal. The in vivo inflammation process was confirmed by the co-localization of GFP-tagged S. Typhimurium with mCherry-tagged neutrophils at 72 h post exposition. Our live-cell analyses suggest that Salmonella Typhimurium induce cloacitis-like symptoms in zebrafish larvae.


Subject(s)
Larva/microbiology , Salmonella Infections, Animal/microbiology , Salmonella typhimurium/pathogenicity , Zebrafish/microbiology , Animals , Bacterial Proteins , Disease Models, Animal , Epithelial Cells/microbiology , Epithelial Cells/pathology , Host-Pathogen Interactions/immunology , Immersion , Immunity, Innate , Intestinal Mucosa/microbiology , Intestinal Mucosa/pathology , Neutrophils/immunology , Salmonella Infections, Animal/immunology , Virulence Factors
18.
J Microbiol Methods ; 135: 20-25, 2017 04.
Article in English | MEDLINE | ID: mdl-28161588

ABSTRACT

The zebrafish model has been used to determine the role of vertebrate innate immunity during bacterial infections. Here, we compare the in vivo immune response induced by GFP-tagged Salmonella Typhimurium inoculated by immersion and microinjection in transgenic zebrafish larvae. Our novel infection protocols in zebrafish allow live-cell imaging of Salmonella colonization.


Subject(s)
Larva/microbiology , Microinjections/methods , Microinjections/veterinary , Salmonella Infections/diagnostic imaging , Salmonella Infections/microbiology , Salmonella typhimurium/pathogenicity , Zebrafish/microbiology , Animals , Animals, Genetically Modified/immunology , Animals, Genetically Modified/microbiology , Disease Models, Animal , Host-Pathogen Interactions/immunology , Immersion , Immunity, Innate/immunology , Larva/immunology , Neutrophils/immunology , Salmonella Infections/immunology , Zebrafish/immunology
19.
Biochim Biophys Acta Gen Subj ; 1861(4): 871-883, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28069396

ABSTRACT

BACKGROUND: Polyphosphate (polyP) is a linear biopolymer found in all living cells. In bacteria, mutants lacking polyphosphate kinase 1 (PPK1), the enzyme responsible for synthesis of most polyP, have many structural and functional defects. However, little is known about the causes of these pleiotropic alterations. The link between ppk1 deletion and those numerous phenotypes observed can be the result of complex molecular interactions that can be elucidated via a systems biology approach. METHODS: By integrating different omics levels (transcriptome, proteome and phenome), we described the functioning of various metabolic pathways among Escherichia coli polyphosphate mutant strains (Δppk1, Δppx, and ΔpolyP). Bioinformatic analyses reveal the complex metabolic and regulatory bases of the phenotypes unique to polyP mutants. RESULTS: Our results suggest that during polyP deficiency (Δppk1 mutant), metabolic pathways needed for energy supply are up-regulated, including fermentation, aerobic and anaerobic respiration. Transcriptomic and q-proteomic contrasting changes between Δppk1 and Δppx mutant strains were observed in those central metabolic pathways and confirmed by using Phenotypic microarrays. In addition, our results suggest a regulatory connection between polyP, second messenger metabolism, alternative Sigma/Anti-Sigma factors and type-II toxin-antitoxin (TA) systems. CONCLUSIONS: We suggest a broader role for polyP via regulation of ATP-dependent proteolysis of type II toxin-antitoxin system and alternative Sigma/Anti-Sigma factors, that could explain the multiple structural and functional deficiencies described due to alteration of polyP metabolism. GENERAL SIGNIFICANCE: Understanding the interplay of polyP in bacterial metabolism using a systems biology approach can help to improve design of novel antimicrobials toward pathogens.


Subject(s)
Escherichia coli/genetics , Mutation/genetics , Polyphosphates/metabolism , Proteome/genetics , Transcriptome/genetics , Antitoxins/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Cell Respiration/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/genetics , Fermentation/genetics , Metabolic Networks and Pathways/genetics , Phosphotransferases (Alcohol Group Acceptor)/genetics , Proteomics/methods , Sigma Factor/genetics , Up-Regulation/genetics
20.
Front Microbiol ; 7: 1305, 2016.
Article in English | MEDLINE | ID: mdl-27602025

ABSTRACT

The social amoeba Dictyostelium discoideum has proven to be a useful model for studying relevant aspects of the host-pathogen interaction. In this work, D. discoideum was used as a model to study the ability of Salmonella Typhimurium to survive in amoebae and to evaluate the contribution of selected genes in this process. To do this, we performed infection assays using axenic cultures of D. discoideum co-cultured with wild-type S. Typhimurium and/or defined mutant strains. Our results confirmed that wild-type S. Typhimurium is able to survive intracellularly in D. discoideum. In contrast, mutants ΔaroA and ΔwaaL are defective in intracellular survival in this amoeba. Next, we included in our study a group of mutants in genes directly linked to Salmonella virulence. Of note, mutants ΔinvA, ΔssaD, ΔclpV, and ΔphoPQ also showed an impaired ability to survive intracellularly in D. discoideum. This indicates that S. Typhimurium requires a functional biosynthetic pathway of aromatic compounds, a lipopolysaccharide containing a complete O-antigen, the type III secretion systems (T3SS) encoded in SPI-1 and SPI-2, the type VI secretion system (T6SS) encoded in SPI-6 and PhoP/PhoQ two-component system to survive in D. discoideum. To our knowledge, this is the first report on the requirement of O-antigen and T6SS in the survival of Salmonella within amoebae. In addition, mutants ΔinvA and ΔssaD were internalized in higher numbers than the wild-type strain during competitive infections, suggesting that S. Typhimurium requires the T3SS encoded in SPI-1 and SPI-2 to evade phagocytosis by D. discoideum. Altogether, these results indicate that S. Typhimurium exploits a common set of genes and molecular mechanisms to survive within amoeba and animal host cells. The use of D. discoideum as a model for host-pathogen interactions will allow us to discover the gene repertoire used by Salmonella to survive inside the amoeba and to study the cellular processes that are affected during infection.

SELECTION OF CITATIONS
SEARCH DETAIL
...