Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
PLoS One ; 10(9): e0138392, 2015.
Article in English | MEDLINE | ID: mdl-26382062

ABSTRACT

Biomimetics, or the use of principles of Nature for developing new materials, is a paradigm that could help Nanomedicine tremendously. One of the current challenges in Nanomedicine is the rational design of new efficient and safer gene carriers. Poly(amidoamine) (PAMAM) dendrimers are a well-known class of nanoparticles, extensively used as non-viral nucleic acid carriers, due to their positively charged end-groups. Yet, there are still several aspects that can be improved for their successful application in in vitro and in vivo systems, including their affinity for nucleic acids as well as lowering their cytotoxicity. In the search of new functional groups that could be used as new dendrimer-reactive groups, we followed a biomimetic approach to determine the amino acids with highest prevalence in protein-DNA interactions. Then we introduced them individually as terminal groups of dendrimers, generating a new class of nanoparticles. Molecular dynamics studies of two systems: PAMAM-Arg and PAMAM-Lys were also performed in order to describe the formation of complexes with DNA. Results confirmed that the introduction of amino acids as terminal groups in a dendrimer increases their affinity for DNA and the interactions in the complexes were characterized at atomic level. We end up by briefly discussing additional modifications that can be made to PAMAM dendrimers to turned them into promising new gene carriers.


Subject(s)
Biomimetics , Dendrimers/chemistry , Gene Transfer Techniques , Nanoparticles , Cell Survival , Molecular Dynamics Simulation
2.
Plant Cell ; 27(1): 177-88, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25595824

ABSTRACT

Sensory modalities are essential for navigating through an ever-changing environment. From insects to mammals, transient receptor potential (TRP) channels are known mediators for cellular sensing. Chlamydomonas reinhardtii is a motile single-celled freshwater green alga that is guided by photosensory, mechanosensory, and chemosensory cues. In this type of alga, sensory input is first detected by membrane receptors located in the cell body and then transduced to the beating cilia by membrane depolarization. Although TRP channels seem to be absent in plants, C. reinhardtii possesses genomic sequences encoding TRP proteins. Here, we describe the cloning and characterization of a C. reinhardtii version of a TRP channel sharing key features present in mammalian TRP channels associated with sensory transduction. In silico sequence-structure analysis unveiled the modular design of TRP channels, and electrophysiological experiments conducted on Human Embryonic Kidney-293T cells expressing the Cr-TRP1 clone showed that many of the core functional features of metazoan TRP channels are present in Cr-TRP1, suggesting that basic TRP channel gating characteristics evolved early in the history of eukaryotes.


Subject(s)
Chlamydomonas/metabolism , Ion Channels/metabolism , Mammals/metabolism , Transient Receptor Potential Channels/metabolism , Animals , Cell Line , Electrophysiology , Humans
SELECTION OF CITATIONS
SEARCH DETAIL