Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
J Am Heart Assoc ; 13(13): e029941, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38904250

ABSTRACT

BACKGROUND: Computational fluid dynamics can compute fractional flow reserve (FFR) accurately. However, existing models are limited by either the intravascular hemodynamic phenomarkers that can be captured or the fidelity of geometries that can be modeled. METHODS AND RESULTS: This study aimed to validate a new coronary angiography-based FFR framework, FFRHARVEY, and examine intravascular hemodynamics to identify new biomarkers that could augment FFR in discerning unrevascularized patients requiring intervention. A 2-center cohort was used to examine diagnostic performance of FFRHARVEY compared with reference wire-based FFR (FFRINVASIVE). Additional biomarkers, longitudinal vorticity, velocity, and wall shear stress, were evaluated for their ability to augment FFR and indicate major adverse cardiac events. A total of 160 patients with 166 lesions were investigated. FFRHARVEY was compared with FFRINVASIVE by investigators blinded to the invasive FFR results with a per-stenosis area under the curve of 0.91, positive predictive value of 90.2%, negative predictive value of 89.6%, sensitivity of 79.3%, and specificity of 95.4%. The percentage ofdiscrepancy for continuous values of FFR was 6.63%. We identified a hemodynamic phenomarker, longitudinal vorticity, as a metric indicative of major adverse cardiac events in unrevascularized gray-zone cases. CONCLUSIONS: FFRHARVEY had high performance (area under the curve: 0.91, positive predictive value: 90.2%, negative predictive value: 89.6%) compared with FFRINVASIVE. The proposed framework provides a robust and accurate way to compute a complete set of intravascular phenomarkers, in which longitudinal vorticity was specifically shown to differentiate vessels predisposed to major adverse cardiac events.


Subject(s)
Coronary Angiography , Fractional Flow Reserve, Myocardial , Predictive Value of Tests , Humans , Fractional Flow Reserve, Myocardial/physiology , Male , Female , Middle Aged , Aged , Coronary Artery Disease/physiopathology , Coronary Artery Disease/diagnosis , Coronary Artery Disease/diagnostic imaging , Coronary Stenosis/physiopathology , Coronary Stenosis/diagnostic imaging , Coronary Stenosis/diagnosis , Models, Cardiovascular , Reproducibility of Results , Coronary Vessels/physiopathology , Coronary Vessels/diagnostic imaging , Hemodynamics/physiology
2.
Int J Mol Sci ; 25(7)2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38612402

ABSTRACT

The dorsal root ganglion (DRG) serves as a pivotal site for managing chronic pain through dorsal root ganglion stimulation (DRG-S). In recent years, the DRG-S has emerged as an attractive modality in the armamentarium of neuromodulation therapy due to its accessibility and efficacy in alleviating chronic pain refractory to conventional treatments. Despite its therapeutic advantages, the precise mechanisms underlying DRG-S-induced analgesia remain elusive, attributed in part to the diverse sensory neuron population within the DRG and its modulation of both peripheral and central sensory processing pathways. Emerging evidence suggests that DRG-S may alleviate pain by several mechanisms, including the reduction of nociceptive signals at the T-junction of sensory neurons, modulation of pain gating pathways within the dorsal horn, and regulation of neuronal excitability within the DRG itself. However, elucidating the full extent of DRG-S mechanisms necessitates further exploration, particularly regarding its supraspinal effects and its interactions with cognitive and affective networks. Understanding these mechanisms is crucial for optimizing neurostimulation technologies and improving clinical outcomes of DRG-S for chronic pain management. This review provides a comprehensive overview of the DRG anatomy, mechanisms of action of the DRG-S, and its significance in neuromodulation therapy for chronic pain.


Subject(s)
Chronic Pain , Humans , Chronic Pain/therapy , Ganglia, Spinal , Pain Management , Afferent Pathways , Sensory Receptor Cells
3.
PLOS Digit Health ; 3(4): e0000431, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38564502

ABSTRACT

Large language models (LLMs) have shown promise for task-oriented dialogue across a range of domains. The use of LLMs in health and fitness coaching is under-explored. Behavior science frameworks such as COM-B, which conceptualizes behavior change in terms of capability (C), Opportunity (O) and Motivation (M), can be used to architect coaching interventions in a way that promotes sustained change. Here we aim to incorporate behavior science principles into an LLM using two knowledge infusion techniques: coach message priming (where exemplar coach responses are provided as context to the LLM), and dialogue re-ranking (where the COM-B category of the LLM output is matched to the inferred user need). Simulated conversations were conducted between the primed or unprimed LLM and a member of the research team, and then evaluated by 8 human raters. Ratings for the primed conversations were significantly higher in terms of empathy and actionability. The same raters also compared a single response generated by the unprimed, primed and re-ranked models, finding a significant uplift in actionability and empathy from the re-ranking technique. This is a proof of concept of how behavior science frameworks can be infused into automated conversational agents for a more principled coaching experience.

4.
Cardiovasc Eng Technol ; 14(2): 194-203, 2023 04.
Article in English | MEDLINE | ID: mdl-36385239

ABSTRACT

PURPOSE: Computational models of flow in patient-derived arterial geometries have become a key paradigm of biomedical research. These fluid models are often challenging to visualize due to high spatial heterogeneity and visual complexity. Virtual immersive environments can offer advantageous visualization of spatially heterogeneous and complex systems. However, as different VR devices offer varying levels of immersion, there remains a crucial lack of understanding regarding what level of immersion is best suited for interactions with patient-specific flow models. METHODS: We conducted a quantitative user evaluation with multiple VR devices testing an important use of hemodynamic simulations-analysis of surface parameters within complex patient-specific geometries. This task was compared for the semi-immersive zSpace 3D monitor and the fully immersive HTC Vive system. RESULTS: The semi-immersive device was more accurate than the fully immersive device. The two devices showed similar results for task duration and performance (accuracy/duration). The accuracy of the semi-immersive device was also higher for arterial geometries of greater complexity and branching. CONCLUSION: This assessment demonstrates that the level of immersion plays a significant role in the accuracy of assessing arterial flow models. We found that the semi-immersive VR device was a generally optimal choice for arterial visualization.


Subject(s)
Hemodynamics , Immersion , Humans
5.
IEEE Trans Parallel Distrib Syst ; 33(3): 642-653, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35498162

ABSTRACT

A propagation pattern for the moment representation of the regularized lattice Boltzmann method (LBM) in three dimensions is presented. Using effectively lossless compression, the simulation state is stored as a set of moments of the lattice Boltzmann distribution function, instead of the distribution function itself. An efficient cache-aware propagation pattern for this moment representation has the effect of substantially reducing both the storage and memory bandwidth required for LBM simulations. This paper extends recent work with the moment representation by expanding the performance analysis on central processing unit (CPU) architectures, considering how boundary conditions are implemented, and demonstrating the effectiveness of the moment representation on a graphics processing unit (GPU) architecture.

6.
J Biomech ; 132: 110919, 2022 02.
Article in English | MEDLINE | ID: mdl-35063831

ABSTRACT

The anomalous aortic origin of coronary arteries (AAOCA) is a congenital disease that can lead to sudden cardiac death (SCD) during strenuous physical activity. Despite AAOCA being the second leading cause of SCD among young athletes, the mechanism behind sudden cardiac death remains mostly unknown. Computational fluid dynamics provides a powerful tool for studying how pathologic anatomy can affect different hemodynamic states. The present study investigates the effect of AAOCA on patient hemodynamics. We performed patient-specific hemodynamic simulations of interarterial AAOCA at baseline and in the exercise state using our massively parallel flow solver. Additionally, we investigate how surgical correction via coronary unroofing impacts patient blood flow. Results show that patient-specific AAOCA models exhibited higher interarterial time-averaged wall shear stress (TAWSS) values compared to the control patients. The oscillatory shear index had no impact on AAOCA. Finally, the coronary unroofing procedure normalized the elevated TAWSS by decreasing TAWSS in the postoperative patient. The present study provides a proof of concept for the potential hemodynamic factors underlying coronary ischemia in AAOCA during exercise state.


Subject(s)
Coronary Vessel Anomalies , Coronary Vessels , Aorta , Coronary Vessel Anomalies/surgery , Hemodynamics , Humans , Patient-Specific Modeling
7.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 4395-4398, 2021 11.
Article in English | MEDLINE | ID: mdl-34892194

ABSTRACT

Computation of Fractional Flow Reserve (FFR) through computational fluid dynamics (CFD) is used to guide intervention and often uses a number of clinically-derived metrics, but these patient-specific data could be costly and difficult to obtain. Understanding which parameters can be approximated from population averages and which parameters need to be patient-specific is important and remains largely unexplored. In this study, we performed a global sensitivity study on two 1D models of FFR to identify the most influential patient parameters. Our results indicated that vessel compliance, cardiac cycle period, flow rate, density, viscosity, and elastic modulus contributed minimally to the variance in FFR and may be approximated from population averages. On the other hand, outlet resistance (i.e., microvascular resistance), stenosis degree, and percent stenosis length contributed the most to FFR computation and needed to be tuned to the patient of interest. Selective measuring of patient-specific parameters may significantly reduce costs and streamline the simulation pipeline without reducing accuracy.


Subject(s)
Coronary Stenosis , Fractional Flow Reserve, Myocardial , Coronary Angiography , Humans , Hydrodynamics , Predictive Value of Tests
8.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 4432-4435, 2021 11.
Article in English | MEDLINE | ID: mdl-34892203

ABSTRACT

Coronary bifurcation lesions are a leading cause of Coronary Artery Disease (CAD). Despite its prevalence, coronary bifurcation lesions remain difficult to treat due to our incomplete understanding of how various features of lesion anatomy synergistically disrupt normal hemodynamic flow. In this work, we employ an interpretable machine learning algorithm, the Classification and Regression Tree (CART), to model the impact of these geometric features on local hemodynamic quantities. We generate a synthetic arterial database via computational fluid dynamic simulations and apply the CART approach to predict the time averaged wall shear stress (TAWSS) at two different locations within the cardiac vasculature. Our experimental results show that CART can estimate a simple, interpretable, yet accurately predictive nonlinear model of TAWSS as a function of such features.Clinical relevance- The fitted tree models have the potential to refine predictions of disturbed hemodynamic flow based on an individual's cardiac and lesion anatomy and consequently makes progress towards personalized treatment planning for CAD patients.


Subject(s)
Coronary Artery Disease , Hemodynamics , Heart , Humans , Machine Learning , Stress, Mechanical
9.
Sci Rep ; 11(1): 8145, 2021 04 14.
Article in English | MEDLINE | ID: mdl-33854076

ABSTRACT

Conventional invasive diagnostic imaging techniques do not adequately resolve complex Type B and C coronary lesions, which present unique challenges, require personalized treatment and result in worsened patient outcomes. These lesions are often excluded from large-scale non-invasive clinical trials and there does not exist a validated approach to characterize hemodynamic quantities and guide percutaneous intervention for such lesions. This work identifies key biomarkers that differentiate complex Type B and C lesions from simple Type A lesions by introducing and validating a coronary angiography-based computational fluid dynamic (CFD-CA) framework for intracoronary assessment in complex lesions at ultrahigh resolution. Among 14 patients selected in this study, 7 patients with Type B and C lesions were included in the complex lesion group including ostial, bifurcation, serial lesions and lesion where flow was supplied by collateral bed. Simple lesion group included 7 patients with lesions that were discrete, [Formula: see text] long and readily accessible. Intracoronary assessment was performed using CFD-CA framework and validated by comparing to clinically measured pressure-based index, such as FFR. Local pressure, endothelial shear stress (ESS) and velocity profiles were derived for all patients. We validates the accuracy of our CFD-CA framework and report excellent agreement with invasive measurements ([Formula: see text]). Ultra-high resolution achieved by the model enable physiological assessment in complex lesions and quantify hemodynamic metrics in all vessels up to 1mm in diameter. Importantly, we demonstrate that in contrast to traditional pressure-based metrics, there is a significant difference in the intracoronary hemodynamic forces, such as ESS, in complex lesions compared to simple lesions at both resting and hyperemic physiological states [n = 14, [Formula: see text]]. Higher ESS was observed in the complex lesion group ([Formula: see text] Pa) than in simple lesion group ([Formula: see text] Pa). Complex coronary lesions have higher ESS compared to simple lesions, such differential hemodynamic evaluation can provide much the needed insight into the increase in adverse outcomes for such patients and has incremental prognostic value over traditional pressure-based indices, such as FFR.


Subject(s)
Coronary Angiography/methods , Coronary Disease/diagnostic imaging , Radiographic Image Interpretation, Computer-Assisted/methods , Computer Simulation , Coronary Disease/classification , Diagnosis, Differential , Hemodynamics , Humans , Shear Strength
10.
Sci Rep ; 9(1): 8854, 2019 06 20.
Article in English | MEDLINE | ID: mdl-31222111

ABSTRACT

Genesis of atherosclerotic lesions in the human arterial system is critically influenced by the fluid mechanics. Applying computational fluid dynamic tools based on accurate coronary physiology derived from conventional biplane angiogram data may be useful in guiding percutaneous coronary interventions. The primary objective of this study is to build and validate a computational framework for accurate personalized 3-dimensional hemodynamic simulation across the complete coronary arterial tree and demonstrate the influence of side branches on coronary hemodynamics by comparing shear stress between coronary models with and without these included. The proposed novel computational framework based on biplane angiography enables significant arterial circulation analysis. This study shows that models that take into account flow through all side branches are required for precise computation of shear stress and pressure gradient whereas models that have only a subset of side branches are inadequate for biomechanical studies as they may overestimate volumetric outflow and shear stress. This study extends the ongoing computational efforts and demonstrates that models based on accurate coronary physiology can improve overall fidelity of biomechanical studies to compute hemodynamic risk-factors.


Subject(s)
Coronary Angiography , Coronary Artery Disease/physiopathology , Hemodynamics/physiology , Models, Cardiovascular , Biomechanical Phenomena , Humans , Patient-Specific Modeling , Percutaneous Coronary Intervention , Stress, Mechanical
11.
Int J Numer Method Biomed Eng ; 35(6): e3198, 2019 06.
Article in English | MEDLINE | ID: mdl-30838793

ABSTRACT

The lattice Boltzmann method (LBM) is a popular alternative to solving the Navier-Stokes equations for modeling blood flow. When simulating flow using the LBM, several choices for inlet and outlet boundary conditions exist. While boundary conditions in the LBM have been evaluated in idealized geometries, there have been no extensive comparisons in image-derived vasculature, where the geometries are highly complex. In this study, the Zou-He (ZH) and finite difference (FD) boundary conditions were evaluated in image-derived vascular geometries by comparing their stability, accuracy, and run times. The boundary conditions were compared in four arteries: a coarctation of the aorta, dissected aorta, femoral artery, and left coronary artery. The FD boundary condition was more stable than ZH in all four geometries. In general, simulations using the ZH and FD method showed similar convergence rates within each geometry. However, the ZH method proved to be slightly more accurate compared with experimental flow using three-dimensional printed vasculature. The total run times necessary for simulations using the ZH boundary condition were significantly higher as the ZH method required a larger relaxation time, grid resolution, and number of time steps for a simulation representing the same physiological time. Finally, a new inlet velocity profile algorithm is presented for complex inlet geometries. Overall, results indicated that the FD method should generally be used for large-scale blood flow simulations in image-derived vasculature geometries. This study can serve as a guide to researchers interested in using the LBM to simulate blood flow.


Subject(s)
Algorithms , Computer Simulation , Coronary Vessels/diagnostic imaging , Coronary Vessels/physiology , Image Processing, Computer-Assisted , Aorta/diagnostic imaging , Aorta/physiology , Blood Flow Velocity , Hydrodynamics , Reproducibility of Results , Rheology , Time Factors
12.
Plast Surg (Oakv) ; 24(1): 41-50, 2016.
Article in English | MEDLINE | ID: mdl-27054138

ABSTRACT

Surgical mesh has become an indispensable tool in hernia repair to improve outcomes and reduce costs; however, efforts are constantly being undertaken in mesh development to overcome postoperative complications. Common complications include infection, pain, adhesions, mesh extrusion and hernia recurrence. Reducing the complications of mesh implantation is of utmost importance given that hernias occur in hundreds of thousands of patients per year in the United States. In the present review, the authors present the different types of hernia meshes, discuss the key properties of mesh design, and demonstrate how each design element affects performance and complications. The present article will provide a basis for surgeons to understand which mesh to choose for patient care and why, and will explain the important technological aspects that will continue to evolve over the ensuing years.


Le treillis chirurgical est devenu indispensable pour réparer les hernies, car il améliore les résultats et réduit les coûts. Cependant, les treillis sont en constant développement afin de vaincre les complications postopératoires. Parmi les complications courantes, soulignons l'infection, la douleur, les adhérences, l'extrusion du treillis et la récurrence des hernies. Il est essentiel de réduire les complications liées à l'implantation des treillis, car des centaines de milliers de patients souffrent de hernies chaque année aux États-Unis. Dans la présente analyse, les auteurs présentent les divers types de treillis pour hernie, en exposent les principales propriétés et démontrent l'effet de chaque élément de conception sur le rendement et les complications. Le présent article aidera les chirurgiens à choisir le treillis pour leurs patients et exposera les aspects technologiques importants qui continueront d'évoluer au cours des prochaines années.

13.
Annu Int Conf IEEE Eng Med Biol Soc ; 2016: 3429-3432, 2016 Aug.
Article in English | MEDLINE | ID: mdl-28269039

ABSTRACT

The development of atherosclerosis in the aorta is associated with low and oscillatory wall shear stress for normal patients. Moreover, localized differences in wall shear stress heterogeneity have been correlated with the presence of complex plaques in the descending aorta. While it is known that coarctation of the aorta can influence indices of wall shear stress, it is unclear how the degree of narrowing influences resulting patterns. We hypothesized that the degree of coarctation would have a strong influence on focal heterogeneity of wall shear stress. To test this hypothesis, we modeled the fluid dynamics in a patient-specific aorta with varied degrees of coarctation. We first validated a massively parallel computational model against experimental results for the patient geometry and then evaluated local shear stress patterns for a range of degrees of coarctation. Wall shear stress patterns at two cross sectional slices prone to develop atherosclerotic plaques were evaluated. Levels at different focal regions were compared to the conventional measure of average circumferential shear stress to enable localized quantification of coarctation-induced shear stress alteration. We find that the coarctation degree causes highly heterogeneous changes in wall shear stress.


Subject(s)
Aortic Coarctation/physiopathology , Models, Cardiovascular , Aorta , Aorta, Thoracic/physiopathology , Cross-Sectional Studies , Humans , Plaque, Atherosclerotic/physiopathology , Stress, Mechanical
SELECTION OF CITATIONS
SEARCH DETAIL
...