Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
1.
Eur J Neurol ; 31(1): e16024, 2024 01.
Article in English | MEDLINE | ID: mdl-37540834

ABSTRACT

BACKGROUND AND PURPOSE: The Registry of Stroke Care Quality (RES-Q) is a worldwide quality improvement data platform that captures performance and quality measures, enabling standardized comparisons of hospital care. The aim of this study was to determine if, and how, RES-Q data are used to influence stroke quality improvement and identify the support and educational needs of clinicians using RES-Q data to improve stroke care. METHODS: A cross-sectional self-administered online survey was administered (October 2021-February 2022). Participants were RES-Q hospital local coordinators responsible for stroke data collection. Descriptive statistics are presented. RESULTS: Surveys were sent to 1463 hospitals in 74 countries; responses were received from 358 hospitals in 55 countries (response rate 25%). RES-Q data were used "always" or "often" to: develop quality improvement initiatives (n = 213, 60%); track stroke care quality over time (n = 207, 58%); improve local practice (n = 191, 53%); and benchmark against evidence-based policies, procedures and/or guidelines to identify practice gaps (n = 179, 50%). Formal training in the use of RES-Q tools and data were the most frequent support needs identified by respondents (n = 165, 46%). Over half "strongly agreed" or "agreed" that to support clinical practice change, education is needed on: (i) using data to identify evidence-practice gaps (n = 259, 72%) and change clinical practice (n = 263, 74%), and (ii) quality improvement science and methods (n = 255, 71%). CONCLUSION: RES-Q data are used for monitoring stroke care performance. However, to facilitate their optimal use, effective quality improvement methods are needed. Educating staff in quality improvement science may develop competency and improve use of data in practice.


Subject(s)
Quality Improvement , Stroke , Humans , Cross-Sectional Studies , Routinely Collected Health Data , Stroke/therapy , Quality of Health Care , Hospitals , Registries
2.
J Bone Miner Res ; 36(11): 2258-2274, 2021 11.
Article in English | MEDLINE | ID: mdl-34423857

ABSTRACT

The Sprouty family is a highly conserved group of intracellular modulators of receptor tyrosine kinase (RTK)-signaling pathways, which have been recently linked to primary cilia. Disruptions in the structure and function of primary cilia cause inherited disorders called ciliopathies. We aimed to evaluate Sprouty2 and Sprouty4 gene-dependent alterations of ciliary structure and to focus on the determination of its association with Hedgehog signaling defects in chondrocytes. Analysis of the transgenic mice phenotype with Sprouty2 and Sprouty4 deficiency revealed several defects, including improper endochondral bone formation and digit patterning, or craniofacial and dental abnormalities. Moreover, reduced bone thickness and trabecular bone mass, skull deformities, or chondroma-like lesions were revealed. All these pathologies might be attributed to ciliopathies. Elongation of the ciliary axonemes in embryonic and postnatal growth plate chondrocytes was observed in Sprouty2-/- and Sprouty2+/- /Sprouty4-/- mutants compared with corresponding littermate controls. Also, cilia-dependent Hedgehog signaling was upregulated in Sprouty2/4 mutant animals. Ptch1 and Ihh expression were upregulated in the autopodium and the proximal tibia of Sprouty2-/- /Sprouty4-/- mutants. Increased levels of the GLI3 repressor (GLI3R) form were detected in Sprouty2/4 mutant primary fibroblast embryonic cell cultures and tissues. These findings demonstrate that mouse lines deficient in Sprouty proteins manifest phenotypic features resembling ciliopathic phenotypes in multiple aspects and may serve as valuable models to study the association between overactivation of RTK and dysfunction of primary cilia during skeletogenesis. © 2021 American Society for Bone and Mineral Research (ASBMR).


Subject(s)
Ciliopathies/genetics , Hedgehog Proteins , Membrane Proteins/genetics , Nerve Tissue Proteins/genetics , Protein Serine-Threonine Kinases/genetics , Signal Transduction , Animals , Cilia/metabolism , Hedgehog Proteins/metabolism , Mice , Mice, Transgenic , Phenotype , Up-Regulation
3.
EMBO Mol Med ; 12(11): e11739, 2020 11 06.
Article in English | MEDLINE | ID: mdl-33200460

ABSTRACT

Mutations in genes affecting primary cilia cause ciliopathies, a diverse group of disorders often affecting skeletal development. This includes Jeune syndrome or asphyxiating thoracic dystrophy (ATD), an autosomal recessive skeletal disorder. Unraveling the responsible molecular pathology helps illuminate mechanisms responsible for functional primary cilia. We identified two families with ATD caused by loss-of-function mutations in the gene encoding adrenergic receptor kinase 1 (ADRBK1 or GRK2). GRK2 cells from an affected individual homozygous for the p.R158* mutation resulted in loss of GRK2, and disrupted chondrocyte growth and differentiation in the cartilage growth plate. GRK2 null cells displayed normal cilia morphology, yet loss of GRK2 compromised cilia-based signaling of Hedgehog (Hh) pathway. Canonical Wnt signaling was also impaired, manifested as a failure to respond to Wnt ligand due to impaired phosphorylation of the Wnt co-receptor LRP6. We have identified GRK2 as an essential regulator of skeletogenesis and demonstrate how both Hh and Wnt signaling mechanistically contribute to skeletal ciliopathies.


Subject(s)
Ellis-Van Creveld Syndrome , G-Protein-Coupled Receptor Kinase 2/genetics , Hedgehog Proteins , Hedgehog Proteins/genetics , Humans , Mutation , Wnt Signaling Pathway
4.
Proc Natl Acad Sci U S A ; 116(10): 4316-4325, 2019 03 05.
Article in English | MEDLINE | ID: mdl-30782830

ABSTRACT

Vertebrate primary cilium is a Hedgehog signaling center but the extent of its involvement in other signaling systems is less well understood. This report delineates a mechanism by which fibroblast growth factor (FGF) controls primary cilia. Employing proteomic approaches to characterize proteins associated with the FGF-receptor, FGFR3, we identified the serine/threonine kinase intestinal cell kinase (ICK) as an FGFR interactor. ICK is involved in ciliogenesis and participates in control of ciliary length. FGF signaling partially abolished ICK's kinase activity, through FGFR-mediated ICK phosphorylation at conserved residue Tyr15, which interfered with optimal ATP binding. Activation of the FGF signaling pathway affected both primary cilia length and function in a manner consistent with cilia effects caused by inhibition of ICK activity. Moreover, knockdown and knockout of ICK rescued the FGF-mediated effect on cilia. We provide conclusive evidence that FGF signaling controls cilia via interaction with ICK.


Subject(s)
Cilia/metabolism , Protein Serine-Threonine Kinases/metabolism , Receptors, Fibroblast Growth Factor/metabolism , Animals , CRISPR-Cas Systems , Fibroblast Growth Factors/metabolism , HEK293 Cells , Hedgehog Proteins/metabolism , Humans , Mice , Mice, Knockout , Models, Animal , Molecular Docking Simulation , NIH 3T3 Cells , Phosphorylation , Protein Interaction Domains and Motifs , Protein Serine-Threonine Kinases/genetics , Proteomics , Receptor, Fibroblast Growth Factor, Type 1/metabolism , Receptor, Fibroblast Growth Factor, Type 3/genetics , Receptor, Fibroblast Growth Factor, Type 3/metabolism , Receptor, Fibroblast Growth Factor, Type 4/metabolism , Receptors, Fibroblast Growth Factor/genetics , Signal Transduction
5.
Sci Signal ; 11(548)2018 09 18.
Article in English | MEDLINE | ID: mdl-30228226

ABSTRACT

Sustained activation of extracellular signal-regulated kinase (ERK) drives pathologies caused by mutations in fibroblast growth factor receptors (FGFRs). We previously identified the inositol phosphatase SHIP2 (also known as INPPL1) as an FGFR-interacting protein and a target of the tyrosine kinase activities of FGFR1, FGFR3, and FGFR4. We report that loss of SHIP2 converted FGF-mediated sustained ERK activation into a transient signal and rescued cell phenotypes triggered by pathologic FGFR-ERK signaling. Mutant forms of SHIP2 lacking phosphoinositide phosphatase activity still associated with FGFRs and did not prevent FGF-induced sustained ERK activation, demonstrating that the adaptor rather than the catalytic activity of SHIP2 was required. SHIP2 recruited Src family kinases to the FGFRs, which promoted FGFR-mediated phosphorylation and assembly of protein complexes that relayed signaling to ERK. SHIP2 interacted with FGFRs, was phosphorylated by active FGFRs, and promoted FGFR-ERK signaling at the level of phosphorylation of the adaptor FRS2 and recruitment of the tyrosine phosphatase PTPN11. Thus, SHIP2 is an essential component of canonical FGF-FGFR signal transduction and a potential therapeutic target in FGFR-related disorders.


Subject(s)
Extracellular Signal-Regulated MAP Kinases/metabolism , MAP Kinase Signaling System , Phosphatidylinositol-3,4,5-Trisphosphate 5-Phosphatases/metabolism , Receptors, Fibroblast Growth Factor/metabolism , src-Family Kinases/metabolism , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Animals , Cell Line, Tumor , Enzyme Activation , Extracellular Signal-Regulated MAP Kinases/genetics , HEK293 Cells , Humans , Membrane Proteins/genetics , Membrane Proteins/metabolism , Phosphatidylinositol-3,4,5-Trisphosphate 5-Phosphatases/genetics , Phosphorylation , Protein Binding , Protein Tyrosine Phosphatase, Non-Receptor Type 11/genetics , Protein Tyrosine Phosphatase, Non-Receptor Type 11/metabolism , Receptors, Fibroblast Growth Factor/genetics , src-Family Kinases/genetics
6.
Biomaterials ; 176: 106-121, 2018 09.
Article in English | MEDLINE | ID: mdl-29879652

ABSTRACT

The blocking of specific protein-protein interactions using nanoparticles is an emerging alternative to small molecule-based therapeutic interventions. However, the nanoparticles designed as "artificial proteins" generally require modification of their surface with (bio)organic molecules and/or polymers to ensure their selectivity and specificity of action. Here, we show that nanosized diamond crystals (nanodiamonds, NDs) without any synthetically installed (bio)organic interface enable the specific and efficient targeting of the family of extracellular signalling molecules known as fibroblast growth factors (FGFs). We found that low nanomolar solutions of detonation NDs with positive ζ-potential strongly associate with multiple FGF ligands present at sub-nanomolar concentrations and effectively neutralize the effects of FGF signalling in cells without interfering with other growth factor systems and serum proteins unrelated to FGFs. We identified an evolutionarily conserved FGF recognition motif, ∼17 amino acids long, that contributes to the selectivity of the ND-FGF interaction. In addition, we inserted this motif into a de novo constructed chimeric protein, which significantly improved its interaction with NDs. We demonstrated that the interaction of NDs, as purely inorganic nanoparticles, with proteins can mitigate pathological FGF signalling and promote the restoration of cartilage growth in a mouse limb explant model. Based on our observations, we foresee that NDs may potentially be applied as nanotherapeutics to neutralize disease-related activities of FGFs in vivo.


Subject(s)
Fibroblast Growth Factors/metabolism , Nanodiamonds/chemistry , Receptors, Fibroblast Growth Factor/metabolism , Amino Acid Motifs , Animals , Cartilage/physiology , Cell Line , Cell Proliferation , Cell Survival , Embryo, Mammalian , Humans , Ligands , Mice , Protein Binding , Signal Transduction , Tibia/physiology , Tissue Culture Techniques
7.
Hum Mol Genet ; 27(6): 1093-1105, 2018 03 15.
Article in English | MEDLINE | ID: mdl-29360984

ABSTRACT

Cilia project from almost every cell integrating extracellular cues with signaling pathways. Constitutive activation of FGFR3 signaling produces the skeletal disorders achondroplasia (ACH) and thanatophoric dysplasia (TD), but many of the molecular mechanisms underlying these phenotypes remain unresolved. Here, we report in vivo evidence for significantly shortened primary cilia in ACH and TD cartilage growth plates. Using in vivo and in vitro methodologies, our data demonstrate that transient versus sustained activation of FGF signaling correlated with different cilia consequences. Transient FGF pathway activation elongated cilia, while sustained activity shortened cilia. FGF signaling extended primary cilia via ERK MAP kinase and mTORC2 signaling, but not through mTORC1. Employing a GFP-tagged IFT20 construct to measure intraflagellar (IFT) speed in cilia, we showed that FGF signaling affected IFT velocities, as well as modulating cilia-based Hedgehog signaling. Our data integrate primary cilia into canonical FGF signal transduction and uncover a FGF-cilia pathway that needs consideration when elucidating the mechanisms of physiological and pathological FGFR function, or in the development of FGFR therapeutics.


Subject(s)
Achondroplasia/physiopathology , Receptor, Fibroblast Growth Factor, Type 3/metabolism , Thanatophoric Dysplasia/physiopathology , Achondroplasia/genetics , Animals , Cartilage/metabolism , Chondrocytes/metabolism , Cilia/pathology , Cilia/physiology , Ciliopathies/genetics , Ciliopathies/physiopathology , Fibroblast Growth Factors/metabolism , Growth Plate/metabolism , Humans , Mice , NIH 3T3 Cells , Phenotype , Primary Cell Culture , Receptor, Fibroblast Growth Factor, Type 3/genetics , Signal Transduction/physiology , Thanatophoric Dysplasia/genetics
8.
Cell Signal ; 42: 144-154, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29030113

ABSTRACT

Receptor tyrosine kinases (RTKs) form multiprotein complexes that initiate and propagate intracellular signals and determine the RTK-specific signalling patterns. Unravelling the full complexity of protein interactions within the RTK-associated complexes is essential for understanding of RTK functions, yet it remains an understudied area of cell biology. We describe a comprehensive approach to characterize RTK interactome. A single tag immunoprecipitation and phosphotyrosine protein isolation followed by mass-spectrometry was used to identify proteins interacting with fibroblast growth factor receptor 3 (FGFR3). A total of 32 experiments were carried out in two different cell types and identified 66 proteins out of which only 20 (30.3%) proteins were already known FGFR interactors. Using co-immunoprecipitations, we validated FGFR3 interaction with adapter protein STAM1, transcriptional regulator SHOX2, translation elongation factor eEF1A1, serine/threonine kinases ICK, MAK and CCRK, and inositol phosphatase SHIP2. We show that unappreciated signalling mediators exist for well-studied RTKs, such as FGFR3, and may be identified via proteomic approaches described here. These approaches are easily adaptable to other RTKs, enabling identification of novel signalling mediators for majority of the known human RTKs.


Subject(s)
Gene Expression Regulation , Proteomics/methods , Receptor, Fibroblast Growth Factor, Type 3/metabolism , Signal Transduction/genetics , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Animals , Cyclin-Dependent Kinases/genetics , Cyclin-Dependent Kinases/metabolism , Endosomal Sorting Complexes Required for Transport/genetics , Endosomal Sorting Complexes Required for Transport/metabolism , Gene Expression Profiling , HEK293 Cells , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Humans , Mice , NIH 3T3 Cells , Peptide Elongation Factor 1/genetics , Peptide Elongation Factor 1/metabolism , Phosphatidylinositol-3,4,5-Trisphosphate 5-Phosphatases/genetics , Phosphatidylinositol-3,4,5-Trisphosphate 5-Phosphatases/metabolism , Phosphoproteins/genetics , Phosphoproteins/metabolism , Phosphorylation , Protein Binding , Protein Interaction Mapping , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Receptor, Fibroblast Growth Factor, Type 3/genetics , Cyclin-Dependent Kinase-Activating Kinase
9.
Bone ; 105: 57-66, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28826843

ABSTRACT

Tyrosine kinase inhibitors are being developed for therapy of malignancies caused by oncogenic FGFR signaling but little is known about their effect in congenital chondrodysplasias or craniosynostoses that associate with activating FGFR mutations. Here, we investigated the effects of novel FGFR inhibitor, ARQ 087, in experimental models of aberrant FGFR3 signaling in cartilage. In cultured chondrocytes, ARQ 087 efficiently rescued all major effects of pathological FGFR3 activation, i.e. inhibition of chondrocyte proliferation, loss of extracellular matrix and induction of premature senescence. In ex vivo tibia organ cultures, ARQ 087 restored normal growth plate architecture and eliminated the suppressing FGFR3 effect on chondrocyte hypertrophic differentiation, suggesting that it targets the FGFR3 pathway specifically, i.e. without interference with other pro-growth pathways. Moreover, ARQ 087 inhibited activity of FGFR1 and FGFR2 mutants associated with Pfeiffer, Apert and Beare-Stevenson craniosynostoses, and rescued FGFR-driven excessive osteogenic differentiation in mouse mesenchymal micromass cultures or in ex vivo calvarial organ cultures. Our data warrant further development of ARQ 087 for clinical use in skeletal disorders caused by activating FGFR mutations.


Subject(s)
Aniline Compounds/therapeutic use , Cell Differentiation , Chondrocytes/pathology , Craniosynostoses/drug therapy , Craniosynostoses/pathology , Mutation/genetics , Quinazolines/therapeutic use , Receptors, Fibroblast Growth Factor/genetics , Signal Transduction , Aniline Compounds/pharmacology , Animals , Cell Culture Techniques , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Cell-Free System , Cellular Senescence/drug effects , Chickens , Chondrocytes/drug effects , Chondrocytes/metabolism , Craniosynostoses/genetics , Extracellular Matrix/drug effects , Extracellular Matrix/metabolism , Fibroblast Growth Factor 2/pharmacology , Limb Buds/pathology , Mice , Organ Culture Techniques , Quinazolines/pharmacology , Rats , Skull/pathology , Tibia/drug effects , Tibia/pathology
10.
Stem Cells ; 35(9): 2050-2059, 2017 09.
Article in English | MEDLINE | ID: mdl-28631381

ABSTRACT

Human pluripotent stem cells (hPSC) require signaling provided by fibroblast growth factor (FGF) receptors. This can be initiated by the recombinant FGF2 ligand supplied exogenously, but hPSC further support their niche by secretion of endogenous FGF2. In this study, we describe a role of tyrosine kinase expressed in hepatocellular carcinoma (TEC) kinase in this process. We show that TEC-mediated FGF2 secretion is essential for hPSC self-renewal, and its lack mediates specific differentiation. Following both short hairpin RNA- and small interfering RNA-mediated TEC knockdown, hPSC secretes less FGF2. This impairs hPSC proliferation that can be rescued by increasing amounts of recombinant FGF2. TEC downregulation further leads to a lower expression of the pluripotency markers, an improved priming towards neuroectodermal lineage, and a failure to develop cardiac mesoderm. Our data thus demonstrate that TEC is yet another regulator of FGF2-mediated hPSC pluripotency and differentiation. Stem Cells 2017;35:2050-2059.


Subject(s)
Cell Lineage , Fibroblast Growth Factor 2/metabolism , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/enzymology , Protein-Tyrosine Kinases/metabolism , Biomarkers/metabolism , Cell Line , Cell Lineage/drug effects , Cell Proliferation/drug effects , Down-Regulation/drug effects , Humans , Recombinant Proteins/pharmacology
11.
Elife ; 62017 02 15.
Article in English | MEDLINE | ID: mdl-28199182

ABSTRACT

In-cell profiling enables the evaluation of receptor tyrosine activity in a complex environment of regulatory networks that affect signal initiation, propagation and feedback. We used FGF-receptor signaling to identify EGR1 as a locus that strongly responds to the activation of a majority of the recognized protein kinase oncogenes, including 30 receptor tyrosine kinases and 154 of their disease-associated mutants. The EGR1 promoter was engineered to enhance trans-activation capacity and optimized for simple screening assays with luciferase or fluorescent reporters. The efficacy of the developed, fully synthetic reporters was demonstrated by the identification of novel targets for two clinically used tyrosine kinase inhibitors, nilotinib and osimertinib. A universal reporter system for in-cell protein kinase profiling will facilitate repurposing of existing anti-cancer drugs and identification of novel inhibitors in high-throughput screening studies.


Subject(s)
Cytological Techniques/methods , Oncogene Proteins/analysis , Protein Kinases/analysis , Animals , Cell Line , Humans , Intravital Microscopy , Mice , Optical Imaging
12.
Oncotarget ; 8(65): 109319-109331, 2017 12 12.
Article in English | MEDLINE | ID: mdl-29312610

ABSTRACT

Many tyrosine kinase inhibitors (TKIs) have failed to reach human use due to insufficient activity in clinical trials. However, the failed TKIs may still benefit patients if their other kinase targets are identified by providing treatment focused on syndromes driven by these kinases. Here, we searched for novel targets of AZD1480, an inhibitor of JAK2 kinase that recently failed phase two cancer clinical trials due to a lack of activity. Twenty seven human receptor tyrosine kinases (RTKs) and 153 of their disease-associated mutants were in-cell profiled for activity in the presence of AZD1480 using a newly developed RTK plasmid library. We demonstrate that AZD1480 inhibits ALK, LTK, FGFR1-3, RET and TRKA-C kinases and uncover a physical basis of this specificity. The RTK activity profiling described here facilitates inhibitor repurposing by enabling rapid and efficient identification of novel TKI targets in cells.

13.
Stem Cell Res ; 17(2): 330-341, 2016 09.
Article in English | MEDLINE | ID: mdl-27608170

ABSTRACT

This study elucidated the stage-specific roles of FGF2 signaling during neural development using in-vitro human embryonic stem cell-based developmental modeling. We found that the dysregulation of FGF2 signaling prior to the onset of neural induction resulted in the malformation of neural rosettes (a neural tube-like structure), despite cells having undergone neural induction. The aberrant neural rosette formation may be attributed to the misplacement of ZO-1, which is a polarized tight junction protein and shown co-localized with FGF2/FGFR1 in the apical region of neural rosettes, subsequently led to abnormal neurogenesis. Moreover, the FGF2 signaling inhibition at the stage of neural rosettes caused a reduction in cell proliferation, an increase in numbers of cells with cell-cycle exit, and premature neurogenesis. These effects may be mediated by NUMB, to which expression was observed enriched in the apical region of neural rosettes after FGF2 signaling inhibition coinciding with the disappearance of PAX6+/Ki67+ neural stem cells and the emergence of MAP2+ neurons. Moreover, our results suggested that the hESC-based developmental system reserved a similar neural stem cell niche in vivo.


Subject(s)
Cell Differentiation/drug effects , Fibroblast Growth Factor 2/pharmacology , Neural Stem Cells/metabolism , Neurons/metabolism , Signal Transduction/drug effects , Cell Line , Chromones/pharmacology , Human Embryonic Stem Cells/cytology , Human Embryonic Stem Cells/metabolism , Humans , Immunohistochemistry , Membrane Proteins/metabolism , Microtubule-Associated Proteins/metabolism , Morpholines/pharmacology , Nerve Tissue Proteins/metabolism , Neural Stem Cells/cytology , Neurogenesis/drug effects , Neurons/cytology , Pyrimidines/pharmacology , RNA Interference , RNA, Small Interfering/metabolism , Receptor, Fibroblast Growth Factor, Type 1/metabolism , Time-Lapse Imaging , Zonula Occludens-1 Protein/antagonists & inhibitors , Zonula Occludens-1 Protein/genetics , Zonula Occludens-1 Protein/metabolism
14.
Hum Mol Genet ; 25(18): 3998-4011, 2016 09 15.
Article in English | MEDLINE | ID: mdl-27466187

ABSTRACT

The short rib polydactyly syndromes (SRPS) are a group of recessively inherited, perinatal-lethal skeletal disorders primarily characterized by short ribs, shortened long bones, varying types of polydactyly and concomitant visceral abnormalities. Mutations in several genes affecting cilia function cause SRPS, revealing a role for cilia function in skeletal development. To identify additional SRPS genes and discover novel ciliary molecules required for normal skeletogenesis, we performed exome sequencing in a cohort of patients and identified homozygosity for a missense mutation, p.E80K, in Intestinal Cell Kinase, ICK, in one SRPS family. The p.E80K mutation abolished serine/threonine kinase activity, resulting in altered ICK subcellular and ciliary localization, increased cilia length, aberrant cartilage growth plate structure, defective Hedgehog and altered ERK signalling. These data identify ICK as an SRPS-associated gene and reveal that abnormalities in signalling pathways contribute to defective skeletogenesis.


Subject(s)
Abnormalities, Multiple/genetics , Hedgehog Proteins/genetics , Protein Serine-Threonine Kinases/genetics , Short Rib-Polydactyly Syndrome/genetics , Skeleton/growth & development , Abnormalities, Multiple/physiopathology , Cilia/genetics , Cilia/pathology , Exome/genetics , Female , Humans , Infant , MAP Kinase Signaling System , Pedigree , Pregnancy , Sequence Analysis, DNA , Short Rib-Polydactyly Syndrome/pathology , Signal Transduction , Skeleton/abnormalities
15.
Biochim Biophys Acta ; 1852(5): 839-50, 2015 May.
Article in English | MEDLINE | ID: mdl-25558817

ABSTRACT

Aberrant fibroblast growth factor (FGF) signaling disturbs chondrocyte differentiation in skeletal dysplasia, but the mechanisms underlying this process remain unclear. Recently, FGF was found to activate canonical WNT/ß-catenin pathway in chondrocytes via Erk MAP kinase-mediated phosphorylation of WNT co-receptor Lrp6. Here, we explore the cellular consequences of such a signaling interaction. WNT enhanced the FGF-mediated suppression of chondrocyte differentiation in mouse limb bud micromass and limb organ cultures, leading to inhibition of cartilage nodule formation in micromass cultures, and suppression of growth in cultured limbs. Simultaneous activation of the FGF and WNT/ß-catenin pathways resulted in loss of chondrocyte extracellular matrix, expression of genes typical for mineralized tissues and alteration of cellular shape. WNT enhanced the FGF-mediated downregulation of chondrocyte proteoglycan and collagen extracellular matrix via inhibition of matrix synthesis and induction of proteinases involved in matrix degradation. Expression of genes regulating RhoA GTPase pathway was induced by FGF in cooperation with WNT, and inhibition of the RhoA signaling rescued the FGF/WNT-mediated changes in chondrocyte cellular shape. Our results suggest that aberrant FGF signaling cooperates with WNT/ß-catenin in suppression of chondrocyte differentiation.


Subject(s)
Cartilage/drug effects , Cell Differentiation/drug effects , Chondrocytes/drug effects , Fibroblast Growth Factors/pharmacology , Receptors, Fibroblast Growth Factor/metabolism , Wnt Proteins/metabolism , beta Catenin/metabolism , Animals , Blotting, Western , Cartilage/cytology , Cartilage/metabolism , Cell Differentiation/genetics , Cell Line, Tumor , Cells, Cultured , Chondrocytes/metabolism , Drug Synergism , Fibroblast Growth Factor 2/pharmacology , HEK293 Cells , Humans , Limb Buds/drug effects , Limb Buds/embryology , Limb Buds/metabolism , Low Density Lipoprotein Receptor-Related Protein-6/genetics , Low Density Lipoprotein Receptor-Related Protein-6/metabolism , Microscopy, Confocal , Models, Biological , Rats , Receptors, Fibroblast Growth Factor/genetics , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction/drug effects , Signal Transduction/genetics , Transcriptome/drug effects , Transcriptome/genetics , Wnt Proteins/genetics , Wnt Proteins/pharmacology , Wnt3A Protein/pharmacology , beta Catenin/genetics
16.
Biocell ; 36(3): 121-126, Dec. 2012. ilus, graf
Article in English | LILACS | ID: lil-694712

ABSTRACT

Recent findings suggest that apoptotic protein apoptosis-inducing factor (AIF) may also play an important non-apoptotic function inside mitochondria. AIF was proposed to be an important component of respiratory chain complex I that is the major producer of superoxide radical. The possible role of AIF is still controversial. Superoxide production could be used as a valuable measure of complex I function, because the majority of superoxide is produced there. Therefore, we employed superoxide-specific mitochondrial fluorescence dye for detection of superoxide production. We studied an impact of AIF knockdown on function of mitochondrial complex I by analyzing superoxide production in selected cell lines. Our results show that tumoral telomerase-positive (TP) AIF knockdown cell lines display significant increase in superoxide production in comparison to control cells, while a non-tumoral cell line and tumoral telomerase-negative cell lines with alternative lengthening of telomeres (ALT) show a decrease in superoxide production. According to these results, we can conclude that AIF knockdown disrupts function of complex I and therefore increases the superoxide production in mitochondria. The distinct effect of AIF depletion in various cell lines could result from recently discovered activity of telomerase in mitochondria of TP cancer cells, but this hypothesis needs further investigation.


Subject(s)
Humans , Apoptosis Inducing Factor/genetics , Apoptosis Inducing Factor/physiology , Electron Transport Complex I/metabolism , Cell Line , Cell Line, Tumor , Fluorescent Dyes/pharmacology , Gene Silencing , HeLa Cells , Image Processing, Computer-Assisted , Mitochondria/metabolism , Mitochondrial Membranes/metabolism , Phenanthridines/pharmacology , Superoxides/metabolism , Telomerase/metabolism , Telomere/ultrastructure
17.
Biocell ; 36(3): 121-126, Dec. 2012. ilus, graf
Article in English | BINACIS | ID: bin-128454

ABSTRACT

Recent findings suggest that apoptotic protein apoptosis-inducing factor (AIF) may also play an important non-apoptotic function inside mitochondria. AIF was proposed to be an important component of respiratory chain complex I that is the major producer of superoxide radical. The possible role of AIF is still controversial. Superoxide production could be used as a valuable measure of complex I function, because the majority of superoxide is produced there. Therefore, we employed superoxide-specific mitochondrial fluorescence dye for detection of superoxide production. We studied an impact of AIF knockdown on function of mitochondrial complex I by analyzing superoxide production in selected cell lines. Our results show that tumoral telomerase-positive (TP) AIF knockdown cell lines display significant increase in superoxide production in comparison to control cells, while a non-tumoral cell line and tumoral telomerase-negative cell lines with alternative lengthening of telomeres (ALT) show a decrease in superoxide production. According to these results, we can conclude that AIF knockdown disrupts function of complex I and therefore increases the superoxide production in mitochondria. The distinct effect of AIF depletion in various cell lines could result from recently discovered activity of telomerase in mitochondria of TP cancer cells, but this hypothesis needs further investigation.(AU)


Subject(s)
Humans , Apoptosis Inducing Factor/genetics , Apoptosis Inducing Factor/physiology , Electron Transport Complex I/metabolism , Cell Line , Cell Line, Tumor , Fluorescent Dyes/pharmacology , Gene Silencing , HeLa Cells , Image Processing, Computer-Assisted , Mitochondria/metabolism , Mitochondrial Membranes/metabolism , Phenanthridines/pharmacology , Superoxides/metabolism , Telomerase/metabolism , Telomere/ultrastructure
18.
Biocell ; 36(3): 121-6, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23682427

ABSTRACT

Recent findings suggest that apoptotic protein apoptosis-inducing factor (AIF) may also play an important non-apoptotic function inside mitochondria. AIF was proposed to be an important component of respiratory chain complex I that is the major producer of superoxide radical. The possible role of AIF is still controversial. Superoxide production could be used as a valuable measure of complex I function, because the majority of superoxide is produced there. Therefore, we employed superoxide-specific mitochondrial fluorescence dye for detection of superoxide production. We studied an impact of AIF knockdown on function of mitochondrial complex I by analyzing superoxide production in selected cell lines. Our results show that tumoral telomerase-positive (TP) AIF knockdown cell lines display significant increase in superoxide production in comparison to control cells, while a non-tumoral cell line and tumoral telomerase-negative cell lines with alternative lengthening of telomeres (ALT) show a decrease in superoxide production. According to these results, we can conclude that AIF knockdown disrupts function of complex I and therefore increases the superoxide production in mitochondria. The distinct effect of AIF depletion in various cell lines could result from recently discovered activity of telomerase in mitochondria of TP cancer cells, but this hypothesis needs further investigation.


Subject(s)
Apoptosis Inducing Factor/genetics , Apoptosis Inducing Factor/physiology , Electron Transport Complex I/metabolism , Cell Line , Cell Line, Tumor , Fluorescent Dyes/pharmacology , Gene Silencing , HeLa Cells , Humans , Image Processing, Computer-Assisted , Mitochondria/metabolism , Mitochondrial Membranes/metabolism , Phenanthridines/pharmacology , Superoxides/metabolism , Telomerase/metabolism , Telomere/ultrastructure
19.
Mol Cell Biochem ; 363(1-2): 301-7, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22160858

ABSTRACT

Apoptosis is a natural form of cell death involved in many physiological changes in the cell. Defects in the process of apoptosis can lead to serious diseases. During some apoptotic pathways, proteins apoptosis-inducing factor (AIF) and endonuclease G (EndoG) are released from the mitochondria and they translocate into the cell nuclei, where they probably participate in chromatin degradation together with other nuclear proteins. Exact mechanism of EndoG activity in cell nucleus is still unknown. Some interacting partners like flap endonuclease 1, DNase I, and exonuclease III were already suggested, but also other interacting partners were proposed. We conducted a living-cell confocal fluorescence microscopy followed by an image analysis of fluorescence resonance energy transfer to analyze the possibility of protein interactions of EndoG with histone H2B and human DNA topoisomerase II alpha (TOPO2a). Our results show that EndoG interacts with both these proteins during apoptotic cell death. Therefore, we can conclude that EndoG and TOPO2a may actively participate in apoptotic chromatin degradation. The possible existence of a degradation complex consisting of EndoG and TOPO2a and possibly other proteins like AIF and cyclophilin A have yet to be investigated.


Subject(s)
Antigens, Neoplasm/metabolism , Apoptosis , Cell Nucleus/enzymology , Chromatin Assembly and Disassembly , DNA Topoisomerases, Type II/metabolism , DNA-Binding Proteins/metabolism , Endodeoxyribonucleases/metabolism , Histones/metabolism , Antigens, Neoplasm/chemistry , Antigens, Neoplasm/genetics , Cell Nucleus/pathology , DNA Topoisomerases, Type II/chemistry , DNA Topoisomerases, Type II/genetics , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/genetics , Endodeoxyribonucleases/chemistry , Endodeoxyribonucleases/genetics , Fluorescence Resonance Energy Transfer , HeLa Cells , Histones/chemistry , Histones/genetics , Humans , Microscopy, Confocal , Models, Molecular , Protein Conformation , Protein Interaction Domains and Motifs , Protein Interaction Mapping , Recombinant Fusion Proteins/metabolism , Time Factors , Transfection
20.
J Cell Biochem ; 109(5): 915-26, 2010 Apr 01.
Article in English | MEDLINE | ID: mdl-20069564

ABSTRACT

Telomeres are specialized chromatin structures that are situated at the end of linear chromosomes and play an important role in cell senescence and immortalization. Here, we investigated whether changes in histone signature influence the nuclear arrangement and positioning of telomeres. Analysis of mouse embryonic fibroblasts revealed that telomeres were organized into specific clusters that partially associated with centromeric clusters. This nuclear arrangement was influenced by deficiency of the histone methyltransferase SUV39h, LMNA deficiency, and the histone deacetylase inhibitor Trichostatin A (TSA). Similarly, nuclear radial distributions of telomeric clusters were preferentially influenced by TSA, which caused relocation of telomeres closer to the nuclear center. Telomeres also co-localized with promyelocytic leukemia bodies (PML). This association was increased by SUV39h deficiency and decreased by LMNA deficiency. These differences could be explained by differing levels of the telomerase subunit, TERT, in SUV39h- and LMNA-deficient fibroblasts. Taken together, our data show that SUV39h and A-type lamins likely play a key role in telomere maintenance and telomere nuclear architecture.


Subject(s)
Gene Rearrangement , Lamin Type A/metabolism , Methyltransferases/metabolism , Repressor Proteins/metabolism , Telomere/metabolism , Animals , DNA-Binding Proteins/metabolism , Epigenesis, Genetic , Fibroblasts/metabolism , Flow Cytometry , Humans , Intranuclear Inclusion Bodies/metabolism , Mice , Protein Transport , Shelterin Complex , Telomerase/metabolism , Telomere/genetics , Telomere-Binding Proteins , Telomeric Repeat Binding Protein 1/metabolism , rap1 GTP-Binding Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...