Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Foods ; 11(13)2022 Jun 24.
Article in English | MEDLINE | ID: mdl-35804686

ABSTRACT

Algae have been consumed for millennia in several parts of the world as food, food supplements, and additives, due to their unique organoleptic properties and nutritional and health benefits. Algae are sustainable sources of proteins, minerals, and fiber, with well-balanced essential amino acids, pigments, and fatty acids, among other relevant metabolites for human nutrition. This review covers the historical consumption of algae in Europe, developments in the current European market, challenges when introducing new species to the market, bottlenecks in production technology, consumer acceptance, and legislation. The current algae species that are consumed and commercialized in Europe were investigated, according to their status under the European Union (EU) Novel Food legislation, along with the market perspectives in terms of the current research and development initiatives, while evaluating the interest and potential in the European market. The regular consumption of more than 150 algae species was identified, of which only 20% are approved under the EU Novel Food legislation, which demonstrates that the current legislation is not broad enough and requires an urgent update. Finally, the potential of the European algae market growth was indicated by the analysis of the trends in research, technological advances, and market initiatives to promote algae commercialization and consumption.

2.
Biology (Basel) ; 11(4)2022 Apr 14.
Article in English | MEDLINE | ID: mdl-35453793

ABSTRACT

S. costatum and C. calcitrans are two cosmopolitan high-value centric diatoms, with a rich nutritional profile. The following work optimised the culture medium of S. costatum and C. calcitrans cultures, respectively, in a stepwise process as follows: 2.4 mM and 1.2 mM of silicate, 4 mM of nitrate, 100 µM of phosphate, 20 and 80 µM iron, and 0.5 mL L-1 of micronutrients. The results that were obtained revealed an increase in biomass productivity with a 1.8- and 3.2-fold increase in biomass that was produced by S. costatum and C. calcitrans, respectively. The biochemical profile showed an increase in high-value PUFAs such as 2.6-fold and 2.3-fold increase in EPA for S. costatum and C. calcitrans, respectively, whilst a 2.6-fold increase in DHA was detected in S. costatum cultures. The present work provides the basic tools for the industrial cultivation of S. costatum and C. calcitrans with enhanced productivity as well as improved biomass quality, two factors which are highly relevant for a more effective application of these diatoms to aquaculture and nutraceutical production.

3.
Bioresour Technol ; 337: 125385, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34147770

ABSTRACT

In this study, two carotenoid-rich strains of the euryhaline microalga Tetraselmis striata CTP4 were isolated by random mutagenesis combined with selection via fluorescence activated cell sorting and growth on norflurazon. Both strains, ED5 and B11, showed an up to 1.5-fold increase in carotenoid contents as compared with the wildtype, independent of the growth conditions. More specifically, violaxanthin, ß-carotene and lutein contents reached as high as 1.63, 4.20 and 3.81 mg g-1 DW, respectively. Genes coding for phytoene synthase, phytoene desaturase, lycopene-ß-cyclase and ε-ring hydroxylase involved in carotenoid biosynthesis were found to be upregulated in ED5 and B11 cells as compared to the wildtype. Both strains showed higher contents of eicosapentaenoic acid as compared with those of the wildtype, reaching up to 4.41 and 2.88 mg g-1 DW, respectively. Overall, these results highlight the complexity of changes in carotenoid biosynthesis regulation that are required to improve pigment contents in microalgae.


Subject(s)
Fatty Acids, Omega-3 , Carotenoids , Gene Expression , Gene Expression Regulation, Plant , Heat-Shock Response , beta Carotene
4.
J Biotechnol ; 325: 15-24, 2021 Jan 10.
Article in English | MEDLINE | ID: mdl-33245925

ABSTRACT

As the periodic emission of light pulses by light emitting diodes (LEDs) is known to stimulate growth or induce high value biocompounds in microalgae, this flashing light regime was tested on growth and biochemical composition of the microalgae Nannochloropsis gaditana, Koliella antarctica and Tetraselmis chui. At low flashing light frequencies (e.g., 5 and 50 Hz, Duty cycle = 0.05), a strain-dependent growth inhibition and an accumulation of protein, polyunsaturated fatty acids, chlorophyll or carotenoids (lutein, ß-carotene, violaxanthin and neoxanthin) was observed. In addition, a 4-day application of low-frequency flashing light to concentrated cultures increased productivities of eicosapentaenoic acid (EPA) and specific carotenoids up to three-fold compared to continuous or high frequency flashing light (500 Hz, Duty cycle = 0.05). Therefore, applying low-frequency flashing light as finishing step in industrial production can increase protein, polyunsaturated fatty acids or pigment contents in biomass, leading to high-value algal products.


Subject(s)
Chlorophyta , Microalgae , Stramenopiles , Biomass , Fatty Acids , Fatty Acids, Unsaturated
5.
Trends Biotechnol ; 35(11): 1088-1101, 2017 11.
Article in English | MEDLINE | ID: mdl-28865804

ABSTRACT

Flashing lights are next-generation tools to mitigate light attenuation and increase the photosynthetic efficiency of microalgal cultivation systems illuminated by light-emitting diodes (LEDs). Optimal flashing light conditions depend on the reaction kinetics and properties of the linear electron transfer chain, energy dissipation, and storage mechanisms of a phototroph. In particular, extremely short and intense light flashes potentially mitigate light attenuation in photobioreactors without impairing photosynthesis. Intelligently controlling flashing light units and selecting electronic components can maximize light emission and energy efficiency. We discuss the biological, physical, and technical properties of flashing lights for algal production. We combine recent findings about photosynthetic pathways, self-shading in photobioreactors, and developments in solid-state technology towards the biotechnological application of LEDs to microalgal production.


Subject(s)
Bioreactors , Lighting/instrumentation , Lighting/methods , Microalgae/growth & development
6.
Bioresour Technol ; 223: 175-183, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27792927

ABSTRACT

The ability of a recent isolate, Tetraselmis sp. CTP4, for nutrient removal from sewage effluents before and after the nitrification process under batch and continuous cultivation was studied. Biomass productivities in both wastewaters were similar under continuous conditions (0.343±0.053gL-1d-1) and nutrient uptake rates were maximal 31.4±0.4mgNL-1d-1 and 6.66±1.57mgP-PO43-L-1d-1 in WW before nitrification when cultivated in batch. Among batch treatments, cellular protein, carbohydrate and lipid levels shifted with aging cultures from 71.7±6.3 to 29.2±1.2%, 17.4±7.2 to 57.2±3.9% and 10.9±1.7 to 13.7±4.7%, respectively. In contrast, CTP4 cultivated continuously in Algal medium (control) showed lower biomass productivities (0.282gVSSL-1d-1) although improved lipid content (up to 20% lipids) in batch cultivation. Overall, Tetraselmis sp. CTP4 is promising for WW treatment as a replacement of the costly nitrification process, fixating more nutrients and providing a protein and carbohydrate-rich biomass as by-product.


Subject(s)
Chlorophyta/metabolism , Waste Management/methods , Wastewater , Biodegradation, Environmental , Biomass , Bioreactors , Carbohydrates/chemistry , Chlorophyta/growth & development , Cities , Lipids/chemistry , Sewage/chemistry , Wastewater/chemistry , Wastewater/microbiology
7.
Sci Rep ; 6: 35663, 2016 10 21.
Article in English | MEDLINE | ID: mdl-27767051

ABSTRACT

Bioprospecting for novel microalgal strains is key to improving the feasibility of microalgae-derived biodiesel production. Tetraselmis sp. CTP4 (Chlorophyta, Chlorodendrophyceae) was isolated using fluorescence activated cell sorting (FACS) in order to screen novel lipid-rich microalgae. CTP4 is a robust, euryhaline strain able to grow in seawater growth medium as well as in non-sterile urban wastewater. Because of its large cell size (9-22 µm), CTP4 settles down after a six-hour sedimentation step. This leads to a medium removal efficiency of 80%, allowing a significant decrease of biomass dewatering costs. Using a two-stage system, a 3-fold increase in lipid content (up to 33% of DW) and a 2-fold enhancement in lipid productivity (up to 52.1 mg L-1 d-1) were observed upon exposure to nutrient depletion for 7 days. The biodiesel synthesized from the lipids of CTP4 contained high levels of oleic acid (25.67% of total fatty acids content) and minor amounts of polyunsaturated fatty acids with ≥4 double bonds (<1%). As a result, this biofuel complies with most of the European (EN14214) and American (ASTM D6751) specifications, which commonly used microalgal feedstocks are usually unable to meet. In conclusion, Tetraselmis sp. CTP4 displays promising features as feedstock with lower downstream processing costs for biomass dewatering and biodiesel refining.

8.
Trends Biotechnol ; 32(8): 422-30, 2014 Aug.
Article in English | MEDLINE | ID: mdl-25012573

ABSTRACT

Light-emitting diodes (LEDs) will become one of the world's most important light sources and their integration in microalgal production systems (photobioreactors) needs to be considered. LEDs can improve the quality and quantity of microalgal biomass when applied during specific growth phases. However, microalgae need a balanced mix of wavelengths for normal growth, and respond to light differently according to the pigments acquired or lost during their evolutionary history. This review highlights recently published results on the effect of LEDs on microalgal physiology and biochemistry and how this knowledge can be applied in selecting different LEDs with specific technical properties for regulating biomass production by microalgae belonging to diverse taxonomic groups.


Subject(s)
Biotechnology/instrumentation , Electrodes , Light , Microalgae , Photobioreactors , Biomass , Cyanobacteria
10.
Mol Microbiol ; 10(2): 253-258, 1993 Oct.
Article in English | MEDLINE | ID: mdl-28776856

ABSTRACT

Exposure of yeast cells to high osmolarities leads to dehydration, collapse of ion gradients over the plasma membrane and decrease in cell viability. The response of yeast cells to high external osmolarities is designated osmostress response. It is likely that both osmoregulatory and general stress reactions are involved in this so far poorly understood process. Part of the response aims at raising the internal osmotic potential, i.e. the production of osmolytes such as glycerol, and exclusion of toxic solutes. In addition, heat-shock proteins and trehalose are synthesized, probably to protect cellular components and to facilitate repair and recovery. Recent analyses of osmosensitive yeast mutants strongly suggest the involvement of protein kinase-mediated signal-transduction pathways in the maintenance of the osmotic integrity of the cell. This has stimulated interesting hypotheses as to the actual osmosensing mechanism.

SELECTION OF CITATIONS
SEARCH DETAIL
...