Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Pharmaceutics ; 15(3)2023 Mar 07.
Article in English | MEDLINE | ID: mdl-36986726

ABSTRACT

Lactoferrin (LF) is a first-line defense protein with a pleiotropic functional pattern that includes anti-inflammatory, immunomodulatory, antiviral, antibacterial, and antitumoral properties. Remarkably, this iron-binding glycoprotein promotes iron retention, restricting free radical production and avoiding oxidative damage and inflammation. On the ocular surface, LF is released from corneal epithelial cells and lacrimal glands, representing a significant percentage of the total tear fluid proteins. Due to its multifunctionality, the availability of LF may be limited in several ocular disorders. Consequently, to reinforce the action of this highly beneficial glycoprotein on the ocular surface, LF has been proposed for the treatment of different conditions such as dry eye, keratoconus, conjunctivitis, and viral or bacterial ocular infections, among others. In this review, we outline the structure and the biological functions of LF, its relevant role at the ocular surface, its implication in LF-related ocular surface disorders, and its potential for biomedical applications.

2.
Int J Mol Sci ; 23(20)2022 Oct 15.
Article in English | MEDLINE | ID: mdl-36293206

ABSTRACT

Keratoconus (KC) is a corneal disorder whose etiology shares a close relationship with Lactoferrin (LTF) dysregulation and Toll-like Receptors 2 (TLR2) overexpression. This study shows how these two important biomarkers are clinically and molecularly interrelated, increasing knowledge about KC pathophysiology, and opening the door to future therapies. In this prospective clinical study, serum and tear LTF concentrations were quantified in 90 KC patients and 60 controls. A correlation analysis with multiple blood and tear immunoinflammatory mediators, and KC-associated tomographic parameters, was performed. An in vitro study using HEK-BlueTMhTLR2 cell cultures was also conducted to determine the expression and functionality of TLR2 under the influence of LTF treatment. As a result, a LTF decreased was observed in KC patients compared to controls (p < 0.0001), evidencing the strong correlation with TLR2 overexpression at systemic and ocular surface level, with inflammatory mediator upregulation and with KC severity. In stimulated cell cultures, TLR2 expression was decreased using 2 mg/mL of LTF. The levels of secreted embryonic alkaline phosphatase (SEAP) and interleukin-8 (IL-8) were also reduced in supernatants after LTF treatment. As conclusions, the dysregulation of LTF and TLR2 in the ocular surface of KC patients contributes to KC severity by maintaining a detrimental chronic immune−inflammatory state. The immunomodulatory properties of LTF on TLR2 expression suggest its potential as a therapeutic approach for KC.


Subject(s)
Keratoconus , Humans , Keratoconus/drug therapy , Keratoconus/metabolism , Toll-Like Receptor 2/genetics , Toll-Like Receptor 2/metabolism , Interleukin-8/metabolism , Lactoferrin/metabolism , Prospective Studies , Alkaline Phosphatase/metabolism , Biomarkers/metabolism
3.
Pharmaceutics ; 14(4)2022 Apr 06.
Article in English | MEDLINE | ID: mdl-35456633

ABSTRACT

BACKGROUND: the present work describes the preparation, characterization and optimization of eight types of PLGA-based nanosystems (nanospheres and nanocapsules) as innovative mucoadhesive drug delivery systems of lactoferrin, in order to achieve a preclinical consistent base as an alternative pharmacological treatment to different ocular syndromes and diseases. METHODS: All different nanoparticles were prepared via two modified nanoprecipitation techniques, using a three-component mixture of drug/polymer/surfactant (Lf/PLGA/Poloxamer), as a way to overcome the inherent limitations of conventional PLGA NPs. These modified polymeric nanocarriers, intended for topical ophthalmic administration, were subjected to in vitro characterization, surface modification and in vitro and in vivo assessments. RESULTS: An appropriate size range, uniform size distribution and negative ζ potential values were obtained for all types of formulations. Lactoferrin could be effectively included into all types of nanoparticles with appropriate encapsulation efficiency and loading capacity values. A greater, extended, and controlled delivery of Lf from the polymeric matrix was observed through the in vitro release studies. No instability or cytotoxicity was proved for all the formulations by means of organotypic models. Additionally, mucoadhesive in vitro and in vivo experiments show a significant increase in the residence time of the nanoparticles in the eye surface. CONCLUSIONS: all types of prepared PLGA nanoparticles might be a potential alternative for the topical ophthalmic administration of lactoferrin.

4.
Int J Pharm ; 616: 121504, 2022 Mar 25.
Article in English | MEDLINE | ID: mdl-35121045

ABSTRACT

Biodegradable poly(lactic-co-glycolic acid) microspheres (PLGA MSs) are attractive delivery systems for site-specific maintained release of therapeutic active substances into the intravitreal chamber. The design, development, and characterization of idebenone-loaded PLGA microspheres by means of an oil-in-water emulsion/solvent evaporation method enabled the obtention of appropriate production yield, encapsulation efficiency and loading values. MSs revealed spherical shape, with a size range of 10-25 µm and a smooth and non-porous surface. Fourier-transform infrared spectroscopy (FTIR) spectra demonstrated no chemical interactions between idebenone and polymers. Solid-state nuclear magnetic resonance (NMR), X-ray diffractometry, differential scanning calorimetry (DSC) and thermogravimetry (TGA) analyses indicated that microencapsulation led to drug amorphization. In vitro release profiles were fitted to a biexponential kinetic profile. Idebenone-loaded PLGA MSs showed no cytotoxic effects in an organotypic tissue model. Results suggest that PLGA MSs could be an alternative intraocular system for long-term idebenone administration, showing potential therapeutic advantages as a new therapeutic approach to the Leber's Hereditary Optic Neuropathy (LHON) treatment by intravitreal administration.


Subject(s)
Optic Atrophy, Hereditary, Leber , Humans , Microspheres , Particle Size , Polylactic Acid-Polyglycolic Acid Copolymer , Ubiquinone/analogs & derivatives
5.
Eur J Pharm Biopharm ; 172: 144-156, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35183717

ABSTRACT

Nanostructured lipid carriers (NLC) are novel lipidic nanosystems that provide significant improvements in terms of high drug loading capacity and controlled drug release. The purpose of the present work was based on the design, development, and physicochemical characterization of lactoferrin-loaded NLCs as a new therapeutic alternative for the keratoconus treatment. Lactoferrin-loaded NLCs were successfully prepared by a double emulsion/solvent evaporation method. The resultant NLC were assessed in terms of particle size, size distribution, surface charge, morphology, encapsulation efficiency (EE), loading capacity (LC), stability, cytotoxicity, in vitro release, and ocular surface retention. Resulting data showed a size of 119.45 ± 11.44 nm, a 0.151 ± 0.045 PDI value and a surface charge of -17.50 ± 2.53 mV. Besides, high EE and LC values were obtained (up to 75%). The in vitro release study demonstrated a lactoferrin controlled release pattern. NLCs were also stable, non-toxic and show mucoadhesive properties. Thus, a consistent preclinical base was obtained, where NLC may be considered as a potential controlled release novel drug delivery system of lactoferrin for the keratoconus treatment.


Subject(s)
Drug Carriers , Nanostructures , Drug Carriers/chemistry , Drug Delivery Systems/methods , Drug Liberation , Lactoferrin , Lipids/chemistry , Nanostructures/chemistry , Particle Size
6.
Pharmaceutics ; 15(1)2022 Dec 22.
Article in English | MEDLINE | ID: mdl-36678663

ABSTRACT

Fungal keratitis (FK) is a corneal mycotic infection that can lead to vision loss. Furthermore, the severity of FK is aggravated by the emergence of resistant fungal species. There is currently only one FDA-approved formulation for FK treatment forcing hospital pharmacy departments to reformulate intravenous drug preparations with unknown ocular bioavailability and toxicity. In the present study, natamycin/voriconazole formulations were developed and characterized to improve natamycin solubility, permanence, and safety. The solubility of natamycin was studied in the presence of two cyclodextrins: HPßCD and HPγCD. The HPßCD was chosen based on the solubility results. Natamycin/cyclodextrin (HPßCD) inclusion complexes characterization and a competition study between natamycin and voriconazole were conducted by NMR (Nuclear Magnetic Resonance). Based on these results, several eye drops with different polymer compositions were developed and subsequently characterized. Permeability studies suggested that the formulations improved the passage of natamycin through the cornea compared to the commercial formulation Natacyn®. The ocular safety of the formulations was determined by BCOP and HET-CAM. The antifungal activity assay demonstrated the ability of our formulations to inhibit the in vitro growth of different fungal species. All these results concluded that the formulations developed in the present study could significantly improve the treatment of FK.

7.
Eur J Pharm Biopharm ; 168: 195-207, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34500025

ABSTRACT

Leber's Hereditary Optic Neuropathy (LHON) is a hereditary mitochondrial neurodegenerative disease of unclear etiology and lack of available therapeutic alternatives. The main goal of the current pilot study was based on the evaluation of the feasibility and characteristics of prolonged and controlled idebenone release from a PCL intravitreal implant. The design, development, and characterization of idebenone-loaded PCL implants prepared by an homogenization/extrusion/solvent evaporation method allowed the obtention of high PY, EE and LC values. In vitro characterization was completed by the assessment of mechanical and instrumental properties. The in vitro release of idebenone from the PCL implants was assessed and the implant erosion was monitored by the mass loss and surface morphology changes. DSC was used to estimate stability and interaction among implant's components. The present work demonstrated the controlled and prolonged idebenone delivery from the PCL implants in an in vitro model. A consistent preclinical base was established, supporting the idea of idebenone-loaded PCL implants as a new strategy of long-term sustained intraocular delivery for the LHON treatment.


Subject(s)
Drug Carriers/chemistry , Drug Delivery Systems , Polyesters/chemistry , Ubiquinone/analogs & derivatives , Animals , Chemistry, Pharmaceutical/methods , Chickens , Chorioallantoic Membrane/drug effects , Delayed-Action Preparations , Drug Implants , Drug Stability , Optic Atrophy, Hereditary, Leber/drug therapy , Pilot Projects , Ubiquinone/administration & dosage , Ubiquinone/chemistry
8.
Invest Ophthalmol Vis Sci ; 62(10): 30, 2021 08 02.
Article in English | MEDLINE | ID: mdl-34431975

ABSTRACT

Purpose: To elucidate dysregulated proteins in keratoconus (KC) to provide a better understanding of the molecular mechanisms that lead to the development of the disease using sequential window acquisition of all theoretical mass spectra (SWATH-MS) as a protein quantification tool of the tear proteomic profile. Methods: Prospective cross-sectional study that includes 25 keratoconic eyes and 25 healthy eyes. All participants underwent a clinical, tomographic, and aberrometric exam. Tear sample was collected using Schirmer strips and analyzed by liquid chromatography with tandem mass spectrometry. SWATH-MS was used as a quantification tool of the tear proteomic profile. The expression of the quantified proteins was compared between groups, and the biological and molecular functions of the dysregulated proteins as well as their functional relationships were studied by in silico analysis. Results: A total of 203 proteins were quantified in tear samples of patients with KC and control participants, of which 18 showed differential expression between groups (P < 0.05). An increase in the expression of 7 proteins and a decrease in the expression of 11 proteins were observed. Protein-protein interactions and gene ontology analysis showed the involvement of these dysregulated proteins in structural, inflammatory-immune, iron homeostasis, oxidative stress, and extracellular matrix proteolysis processes. Conclusions: Tear protein quantification has revealed the dysregulation of proteins involved in biological processes previously associated with KC. Among them, iron homeostasis should be highlighted as a relevant pathway in the KC pathophysiology, and it should be taken into account in the development of therapeutic targets to cope with tissue damage derived from iron accumulation and toxicity.


Subject(s)
Eye Proteins/metabolism , Keratoconus/metabolism , Proteomics/instrumentation , Tandem Mass Spectrometry/methods , Tears/chemistry , Adult , Biomarkers/analysis , Chromatography, Liquid , Cross-Sectional Studies , Female , Humans , Keratoconus/diagnosis , Male , Prospective Studies , Proteomics/methods
9.
Int J Pharm ; 597: 120318, 2021 Mar 15.
Article in English | MEDLINE | ID: mdl-33540021

ABSTRACT

Fungal keratitis is a severe infectious corneal disease. At present, no voriconazole ophthalmic formulations are approved by the FDA or EMA. This lack of therapeutic options leads to the reformulation of intravenous voriconazole preparations (VFEND®) by the hospital pharmacy departments to prepare the appropriate ophthalmic formulations (pharmacy compounding). However, the limited residence time of these formulations leads to an intensive treatment posology that may increase the occurrence of side effects. In the present study, two different hydrogels were developed and characterized in order to improve the voriconazole's ophthalmic solubility, permanence, and security. Voriconazole-cyclodextrin (HPßCD or HPÉ£CD) inclusion complexes in aqueous solutions were characterized by NMR and molecular modeling. Complexes were formed by encapsulation of voriconazole into the cyclodextrin's internal cavity which considerably increases its water solubility. Ocular safety was proven by ocular irritation studies. Permeability studies suggest both hydrogels have good corneal permeability. Furthermore, in vivo ocular permanence study by PET/CT showed a longer permanence time on the ocular surface (t1/2 = 58.91 ± 13.4 min and 96.28 ± 49.11 min for VZHAH and VZISH 0.65 respectively) compared to the voriconazole control formulation (VFEND® t1/2 = 32.27 ± 15.56 min). Results suggest these formulations are a good alternative for the treatment of fungal keratitis.


Subject(s)
Eye Infections, Fungal , Keratitis , 2-Hydroxypropyl-beta-cyclodextrin , Antifungal Agents/therapeutic use , Eye Infections, Fungal/drug therapy , Humans , Hydrogels , Keratitis/drug therapy , Ophthalmic Solutions , Positron Emission Tomography Computed Tomography , Voriconazole
10.
Pharmaceutics ; 13(2)2021 Jan 23.
Article in English | MEDLINE | ID: mdl-33498753

ABSTRACT

Uveitis is a vision inflammatory disorder with a high prevalence in developing countries. Currently, marketed treatments remain limited and reformulation is usually performed to obtain a tacrolimus eye drop as a therapeutic alternative in corticosteroid-refractory eye disease. The aim of this work was to develop a mucoadhesive, non-toxic and stable topical ophthalmic formulation that can be safely prepared in hospital pharmacy departments. Four different ophthalmic formulations were prepared based on the tacrolimus/hydroxypropyl-ß-cyclodextrin (HPßCD) inclusion complexes' formation. Phase solubility diagrams, Nuclear Magnetic Resonance (NMR) and molecular modeling studies showed the formation of 1:1 and 1:2 tacrolimus/HPßCD inclusion complexes, being possible to obtain a 0.02% (w/v) tacrolimus concentration by using 40% (w/v) HPßCD aqueous solutions. Formulations also showed good ophthalmic properties in terms of pH, osmolality and safety. Stability studies proved these formulations to be stable for at least 3 months in refrigeration. Ex vivo bioadhesion and in vivo ocular permanence showed good mucoadhesive properties with higher ocular permanence compared to the reference pharmacy compounding used in clinical settings (t1/2 of 86.2 min for the eyedrop elaborated with 40% (w/v) HPßCD and Liquifilm® versus 46.3 min for the reference formulation). Thus, these novel eye drops present high potential as a safe alternative for uveitis treatment, as well as a versatile composition to include new drugs intended for topical ophthalmic administration.

11.
ACS Appl Mater Interfaces ; 13(3): 3559-3575, 2021 Jan 27.
Article in English | MEDLINE | ID: mdl-33428398

ABSTRACT

This research study describes the design, optimization, and characterization of two different types of chitosan-based nanoparticles as novel drug delivery systems of a protein drug, lactoferrin. A preclinical consistent base was obtained for both nanosystems, being considered as the first pharmacological treatment for keratoconus as an alternative to current invasive clinical methods. Both types of nanoparticles were obtained via the ionotropic gelation technique. The size and morphology of the nanoparticles were studied as a function of the preparation conditions. A mean size of 180.73 ± 40.67 nm, a size distribution [polydispersity index (PDI)] of 0.170 ± 0.067, and positive ζ-potential values, ranging from 17.13 to 19.89 mV, were achieved. Lactoferrin was successfully incorporated into both types of nanocarriers. In vitro release profiles showed a lactoferrin enhanced, prolonged, and controlled delivery from the polymeric matrix. These formulations also demonstrated no stability or cytotoxicity problems, as well as appropriate mucoadhesive properties, with a high permanence time in the ocular surface. Thus, both types of nanoparticles may be considered as nanocarriers for the controlled release of lactoferrin as novel topical ophthalmic drug delivery systems.


Subject(s)
Anti-Infective Agents/administration & dosage , Chitosan/chemistry , Delayed-Action Preparations/chemistry , Lactoferrin/administration & dosage , Nanoparticles/chemistry , beta-Cyclodextrins/chemistry , Animals , Anti-Infective Agents/pharmacokinetics , Anti-Infective Agents/therapeutic use , Cattle , Chickens , Cornea/metabolism , Drug Delivery Systems , Humans , Keratoconus/drug therapy , Lactoferrin/pharmacokinetics , Lactoferrin/therapeutic use , Male , Rats, Sprague-Dawley
12.
Pharmaceutics ; 12(3)2020 Mar 16.
Article in English | MEDLINE | ID: mdl-32188045

ABSTRACT

The treatment of the posterior-segment ocular diseases, such as age-related eye diseases (AMD) or diabetic retinopathy (DR), present a challenge for ophthalmologists due to the complex anatomy and physiology of the eye. This specialized organ is composed of various static and dynamic barriers that restrict drug delivery into the target site of action. Despite numerous efforts, effective intraocular drug delivery remains unresolved and, therefore, it is highly desirable to improve the current treatments of diseases affecting the posterior cavity. This review article gives an overview of pharmacokinetic and biopharmaceutics aspects for the most commonly-used ocular administration routes (intravitreal, topical, systemic, and periocular), including information of the absorption, distribution, and elimination, as well as the benefits and limitations of each one. This article also encompasses different conventional and novel drug delivery systems designed and developed to improve drug pharmacokinetics intended for the posterior ocular segment treatment.

13.
J Pharm Sci ; 107(5): 1342-1351, 2018 05.
Article in English | MEDLINE | ID: mdl-29305870

ABSTRACT

Econazole is a feasible alternative treatment in the management of fungal keratitis. Nevertheless, its low water solubility is considered the main limitation to the incorporation into ophthalmic formulations. In this work, econazole nitrate is solubilized by using cyclodextrins to achieve an optimum therapeutic concentration. Phase solubility diagrams suggest α-cyclodextrin as the most effective cyclodextrin and later the inclusion complex formed with this one was characterized in solution by 1D, 2D-NMR, and molecular modeling. Econazole-α-cyclodextrin inclusion complex was included in 2 types of ocular hydrogels: a natural polysaccharides ion-sensitive hydrogel and a hyaluronic acid hydrogel. Both of them show no ocular irritation in the hen's egg test on chorioallantoic membrane assay and a controlled econazole release over time. Permeability studies suggest that hydrogels do not modify the econazole nitrate permeability through bovine cornea in comparison with an econazole-α-cyclodextrin inclusion complex solution. Finally, ocular biopermanence studies performed using positron emission tomography show these hydrogels present a high retention time on the eye. Results suggest the developed formulations have a high potential as vehicles for the econazole topical ocular administration as fungal keratitis treatment.


Subject(s)
Antifungal Agents/administration & dosage , Delayed-Action Preparations/chemistry , Econazole/administration & dosage , Hydrogels/chemistry , Keratitis/drug therapy , alpha-Cyclodextrins/chemistry , Administration, Ophthalmic , Animals , Antifungal Agents/pharmacokinetics , Antifungal Agents/pharmacology , Cattle , Chickens , Cornea/metabolism , Cornea/microbiology , Drug Compounding , Econazole/pharmacokinetics , Econazole/pharmacology , Fungi/drug effects , Keratitis/metabolism , Keratitis/microbiology , Solubility
SELECTION OF CITATIONS
SEARCH DETAIL