ABSTRACT
The present research exposes a novel methodology to manufacture fiber optic sensors following the etching process by Hydrofluoric Acid deposition through a real-time monitoring diameter measurement by computer vision. This is based on virtual instrumentation developed with the National Instruments® technology and a conventional digital microscope. Here, the system has been tested proving its feasibility by the SMS structure diameter reduction from its original diameter of 125 µ until approximately 42.5 µm. The results obtained have allowed us to demonstrate a stable state behavior of the developed system during the etching process through diameter measurement at three different structure sections. Therefore, this proposal will contribute to the etched fiber optic sensor development that requires reaching an enhanced sensitivity. Finally, to demonstrate the previously mentioned SMS without chemical corrosion, and the etched manufactured SMS, both have been applied as glucose concentration sensors.
Subject(s)
Fiber Optic Technology , Optical Fibers , Fiber Optic Technology/methodsABSTRACT
In the last few years, the growing demand for electric vehicles (EVs) in the transportation sector has contributed to the increased use of electric rechargeable batteries. At present, lithium-ion (Li-ion) batteries are the most commonly used in electric vehicles. Although once their storage capacity has dropped to below 80-70% it is no longer possible to use these batteries in EVs, it is feasible to use them in second-life applications as stationary energy storage systems. The purpose of this study is to present an embedded system that allows a Nissan® LEAF Li-ion battery to communicate with an Ingecon® Sun Storage 1Play inverter, for control and monitoring purposes. The prototype was developed using an Arduino® microcontroller and a graphical user interface (GUI) on LabVIEW®. The experimental tests have allowed us to determine the feasibility of using Li-ion battery packs (BPs) coming from the automotive sector with an inverter with no need for a prior disassembly and rebuilding process. Furthermore, this research presents a programming and hardware methodology for the development of the embedded systems focused on second-life electric vehicle Li-ion batteries. One second-life battery pack coming from a Nissan® Leaf and aged under real driving conditions was integrated into a residential microgrid serving as an energy storage system (ESS).
ABSTRACT
Indoor navigation systems incorporating augmented reality allow users to locate places within buildings and acquire more knowledge about their environment. However, although diverse works have been introduced with varied technologies, infrastructure, and functionalities, a standardization of the procedures for elaborating these systems has not been reached. Moreover, while systems usually handle contextual information of places in proprietary formats, a platform-independent model is desirable, which would encourage its access, updating, and management. This paper proposes a methodology for developing indoor navigation systems based on the integration of Augmented Reality and Semantic Web technologies to present navigation instructions and contextual information about the environment. It comprises four modules to define a spatial model, data management (supported by an ontology), positioning and navigation, and content visualization. A mobile application system was developed for testing the proposal in academic environments, modeling the structure, routes, and places of two buildings from independent institutions. The experiments cover distinct navigation tasks by participants in both scenarios, recording data such as navigation time, position tracking, system functionality, feedback (answering a survey), and a navigation comparison when the system is not used. The results demonstrate the system's feasibility, where the participants show a positive interest in its functionalities.