Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters











Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 28(12): 15565-15573, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33580365

ABSTRACT

The objective of this research was to find out the potential of bioscouring using xylano-pectinolytic enzymes, for degumming of aloe fibers. Bioscouring was optimized with 1 : 20 fiber to buffer ratio, using 10 IU xylanase and 3.2 IU pectinase in 50 mM buffer (pH 8.5), EDTA (3 mM), and Tween 80 (1%), at 50°C temperature with agitation rate of 50 rpm and treatment period of 60 min. Enzymatic treatment of aloe fibers increased brightness and whiteness by 55.67% and 24.88%, respectively and decreased yellowness by 44.11% as compared to alkaline fiber scouring, thereby replacing chemical scouring completely. Additionally, the pretreatment of aloe fibers with enzymes resulted in a 50% less consumption of bleaching chemicals with similar optical properties as obtained by 100% bleaching. This is the first report showing the eco-friendly bioscouring approach of aloe fibers, using enzymes produced concurrently from a bacterial isolate.


Subject(s)
Aloe , Conservation of Natural Resources , Polygalacturonase , Technology , Temperature , United States
2.
Bioprocess Biosyst Eng ; 44(3): 607-615, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33033865

ABSTRACT

This study was undertaken to investigate the potential of bioscouring in the processing of undegummed sisal fibers, using xylano-pectinolytic enzymes. Optimum bioscouring was obtained at pH 8.5 and 50 mM buffer molarity, using xylanase (10 IU) and pectinase (8 IU), with a material to liquor proportion of 1:25 (g:ml), EDTA (2 mM) and Tween 80 (0.5%), at 50 °C temperature with agitation rate of 55 rpm and treatment period of 60 min. Enzymatic treatment of sisal fibers enhanced the brightness and whiteness by 11.52 and 6.83%, respectively, and reduced the yellowness by 7.14% in comparison to control. The use of xylanase and pectinase enzymes completely replaced the chemical scouring method for removing non-cellulosic impurities. Thus, enzymatic scouring is energy saving and ecofriendly, since it completely eliminated the use of toxic chemicals used in alkaline scouring. An increase of 23.75% and 11.58% in brightness and whiteness of enzymatically scoured cum bleached fibers, as compared to chemically scoured cum bleached fibers was finally obtained, along with reduction in yellowness by 27.99%. This is the first report demonstrating environmentally sustainable enzymatic approach for scouring of undegummed sisal fibers, using enzymes, simultaneously produced from a bacterial isolate.


Subject(s)
Bacillus pumilus/enzymology , Bacterial Proteins/chemistry , Endo-1,4-beta Xylanases/chemistry , Pectins/chemistry , Polygalacturonase/chemistry , Hydrogen-Ion Concentration
3.
Environ Sci Pollut Res Int ; 27(35): 44614-44622, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33037542

ABSTRACT

This research was carried out with an objective to examine the efficacy of ultrafiltered xylano-pectinolytic enzymes in pulping of sugarcane bagasse. Maximum biopulping was achieved with enzyme dose of xylanase (175 IU / g bagasse) and pectinase (75 IU / g bagasse) at treatment period of 180 min. The temperature, pH, and bagasse to liquid ratio for biopulping experiments were kept constant at 55o C, 8.5, and 1:10 (g/ml), respectively. The ultrafiltered biopulping improved chemical pulping, resulted in 25.11%, 9.17% increase in brightness, unscreened pulp production and 11.81, 59.50, and 49.14% decrease in total solids, rejections. and kappa number, respectively. The bagasse biopulping also resulted in 15% decrease of alkali load to attain similar kappa number and optical properties as obtained under 100% alkali dosage. Ultrafiltered biopulped-unbleached samples showed significant increase in breaking length (13.55%), burst index (40.21%), tear index (19.04%), double fold (42.5%), Gurley porosity (28.21%) and viscosity (13.37%) in comparison with non-enzymatically treated control pulp samples. In comparison with non biotreated-bleached pulp samples, ultrafiltered biopulped-bleached samples also resulted in higher burst index (56.80%), breaking length (17.38%), double fold (39.58%), tear index (3.38%), viscosity (30.68%), and Gurley porosity (52.50%). This environmentally sustainable ultrafiltered biopulping approach for sugarcane bagasse has the potential to decrease the demand of chemicals, ultimately pollution along with enhance the quality of paper.


Subject(s)
Saccharum , Alkalies , Cellulose , Paper
4.
Environ Sci Pollut Res Int ; 27(27): 34574-34582, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32681331

ABSTRACT

In this study, suitability of xylano-pectinolytic enzymes in pulping of wheat straw has been explored. The suitable biopulping conditions were optimized, with xylanase dose of 400 and pectinase dose of 120 IU/g wheat straw, 1:10 (g/ml) material to liquid ratio, 55 °C temperature, 3 h treatment time, 0.75% Tween 80 and pH 8.5. Enzymatic pretreatment efficiently increased the pulpability of wheat straw, generated pulp with higher yield, lower kappa number (15.67%) and rejections (59.65%) in comparison with chemical pulp. The brightness of pretreated wheat straw pulp with enzyme was 16.04% higher than that of the non-enzyme treated wheat straw pulp. The biopulping resulted in 12% reduction of pulping chemicals along with more residual alkali content, in order to achieve similar optical and chemical properties as obtained by 100% chemically treated pulp. Physical properties of pulp also improved after enzymatic pretreatment, increasing burst index (26.50%), tear index (18.22%) and breaking length (5.56%). The enzyme plus chemical (88% pulping chemicals) treated pulp showed improvement in brightness and whiteness, with reduction in yellowness at all bleaching stages. In comparison with chemically bleached pulp, biopulp with reduced alkali dose (88%) had higher breaking length (6.63%), double fold number (51.28%), tear index (2.83%), burst index (24.31%), along with increased viscosity (6.12%) and Gurley porosity (27.50%). These results clearly suggest that biopulping of wheat straw with xylano-pectinolytic enzymes can reduce chemical loading during soda-anthraquinone pulping and also improve the quality of paper. This is the first report demonstrating the biopulping of wheat straw using crude xylano-pectinolytic enzymes.


Subject(s)
Endo-1,4-beta Xylanases , Triticum , Alkalies , Color , Paper , Polygalacturonase
5.
Prep Biochem Biotechnol ; 50(5): 521-528, 2020.
Article in English | MEDLINE | ID: mdl-31922919

ABSTRACT

In this study, the efficacy of xylano-pectinolytic enzymes in scouring of banana fibers has been reported. Maximum efficiency of bioscouring was recorded using xylanase and pectinase doses of 15 and 4.8 IU, respectively (produced by a bacterial isolate) at a material-to-liquor proportion of 1:25 having 8.5 pH, treatment time of 1 h, speed of 50 rpm, temperature 50 °C, 3 mM EDTA and 1% Tween-80, with maximum sugar release, enhanced fiber water absorbing power and the finest optical characteristics. Enzymatic treatment resulted in 13.27% increase in whiteness, 16.14% increase in brightness and 8.63% decrease in yellowness as compared to raw banana fibers. The bioscouring also resulted in 50% reduction in scouring chemicals, in order to achieve the similar optical characteristics as obtained by the chemically treated fibers with 100% scouring and bleaching. It decreased the consumption of environment polluting chemicals and energy. Therefore, this has proven to be an environment safe method for removing the non-cellulosic impurities. This is the first report mentioning the scouring of banana fibers using xylano-pectinolytic enzymes.


Subject(s)
Bacterial Proteins/chemistry , Endo-1,4-beta Xylanases/chemistry , Musa/chemistry , Polygalacturonase/chemistry , Textiles , Bacillus pumilus/enzymology , Green Chemistry Technology
6.
Biotechnol Prog ; 36(2): e2913, 2020 03.
Article in English | MEDLINE | ID: mdl-31531951

ABSTRACT

In this study, zymographic analysis for xylanase and pectinase enzymes has been carried out using agrowaste residues, wheat bran and citrus peel as well as their extracts. Isozymic forms of xylanase as well as pectinase enzyme displayed comparable zymographic bands onto agar petriplates containing either commercial substrates (xylan and pectin), agrowaste-based substrates (wheat bran and citrus peel), or polysaccharides extracted from these agrowastes (crude xylan and pectin extracted from wheat bran and citrus peel, respectively), indicating the fact that agro residues and their extracts can be utilized as a substitute of cost-intensive commercial substrates, xylan and pectin for zymographic analysis. This is the first report revealing the zymographic analysis of xylano-pectinolytic enzymes using agro-based solid residues particles or polysaccharides extracted from agro-based residues.


Subject(s)
Pectins/chemistry , Polygalacturonase/analysis , Waste Products , Xylans/chemistry , Xylosidases/analysis , Pectins/metabolism , Polygalacturonase/metabolism , Polysaccharides/chemistry , Polysaccharides/metabolism , Xylans/metabolism , Xylosidases/metabolism
7.
Environ Sci Pollut Res Int ; 27(6): 6701-6710, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31873900

ABSTRACT

This study was carried out to demonstrate the biotechnological potential of xylano-pectinolytic enzymes on scouring of ramie fibers. Optimization of bioscouring process showed a maximum effect of enzymes with 50-mM strength of buffer, pH 8.5, fibers to liquid ratio of 1 : 20 (g:ml). Xylanase and pectinase dosage of 7.5 and 3.0 IU, respectively, was found to be best for removal of xylan and pectin impurities, after treatment time of 1.5 h, at 50 °C temperature and 55 rpm agitation rate. EDTA and Tween 80 at concentration of 1.5 mM and 1.25 %, respectively, were found to be the best for effective removal of impurities, in order to improve hydrophilicity of the fibers. After bioscouring, brightness and whiteness values of bioscoured fibers were increased by 9.72 and 7.10% in comparison with control fibers. After enzymatic scouring, a reduction of 14.45 % in yellowness was also seen in ramie fibers. Enzymatic treatment resulted in 6.97% increased brightness, 10.64% increased whiteness, and 4.11% decreased yellowness as compared with scoured ramie fibers. The results indicated that scouring using xylanase and pectinase enzymes could be a substitute for chemical scouring technique. Enzymatic scouring is, therefore, environmentally sustainable and saves energy, also decreases the consumption of harmful chemicals used in alkaline scouring. This is the first report showing the effect of xylanase and pectinase enzymes, produced by a bacterial isolate, on physico-chemical and various optical properties of ramie fibers.


Subject(s)
Models, Chemical , Textiles , Boehmeria , Pectins , Polygalacturonase , Temperature
8.
Biotechnol Appl Biochem ; 66(4): 574-585, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31021011

ABSTRACT

Simultaneous production of alkaline xylanase and all seven types of pectinases by a bacterial isolate, under solid-state fermentation was checked in this study. Under optimized conditions, high concurrent production of xylanase (22,800 ± 578 IU/g substrate) and pectinase (4,832 ± 189 IU/g substrate) was achieved. The different types of pectinases produced were exo-polymethylgalacturonase (782 IU/g), endo-polymethylgalacturonase (6.42 U/g), exo-polygalacturonase (2,250 IU/g), endo-polygalacturonase (11.57 U/g), polymethylgalacturonate lyase (53.99 IU/g), polygalacturonate lyase (59.78 IU/g), and pectin esterase (5.78 IU/g). Wheat bran resulted in the highest titer of both enzymes. The maximum xylanase-pectinase yield was detected after 7 days of incubation with 2 mM MgSO4 and 1.5 g/L K2 HPO4 at wheat bran to moisture ratio 1:1.5 (w/v), media to flask volume ratio 1:25, pH 7.0, temperature 37 °C, and inoculum size 15%. Xylanase was most stable at pH 8.0, retained more than 75% activity up to 24 H, whereas pectinase was most stable at pH 9.0, having full activity even after 24 H. At 45 °C, the xylanase showed 82% residual activity after 6 H of incubation. The pectinase was 97% and 61% stable up to 3 H at 50 and 55 °C, respectively. This is the first report showing the production of xylanase-pectinases by bacterium along with high titer of seven types of pectinases, suitable for industries.


Subject(s)
Aspergillus/metabolism , Fermentation , Industrial Microbiology/economics , Polygalacturonase/biosynthesis , Xylosidases/biosynthesis
9.
3 Biotech ; 7(2): 108, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28567621

ABSTRACT

In this study, screening and isolation of xylano-cellulolytic enzymes producing positive microbes from termitarium and termite gut microbiome were done using cost-effective agricultural wastes. The enrichment of xylano-cellulolytic microbes was done in three steps using wheat bran and waste paper. The qualitative screening of xylanase and cellulase producing micro-organisms was done on nutrient agar plates containing wheat bran and waste paper, respectively. Xylanase and cellulase positive colonies were analysed by observing the zone of substrate (wheat bran and waste paper) hydrolysis around the colonies. A total of 30 bacterial isolates were obtained from termite gut and termitarium, respectively. Xylan and cellulose degrading potential of the positive isolates was also quantitatively estimated using agro-wastes-based medium. All the bacterial isolates displayed cellulase and xylanase activities in the range of 0.45-6.80 and 51-380 IU/ml, respectively. This is the first report mentioning the isolation of xylano-cellulolytic microbes from termite gut and termitarium using very simple cost-effective methodology.

SELECTION OF CITATIONS
SEARCH DETAIL