Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Radiology ; 311(1): e231991, 2024 04.
Article in English | MEDLINE | ID: mdl-38687218

ABSTRACT

Background Digital breast tomosynthesis (DBT) is often inadequate for screening women with a personal history of breast cancer (PHBC). The ongoing prospective Tomosynthesis or Contrast-Enhanced Mammography, or TOCEM, trial includes three annual screenings with both DBT and contrast-enhanced mammography (CEM). Purpose To perform interim assessment of cancer yield, stage, and recall rate when CEM is added to DBT in women with PHBC. Materials and Methods From October 2019 to December 2022, two radiologists interpreted both examinations: Observer 1 reviewed DBT first and then CEM, and observer 2 reviewed CEM first and then DBT. Effects of adding CEM to DBT on incremental cancer detection rate (ICDR), cancer type and node status, recall rate, and other performance characteristics of the primary radiologist decisions were assessed. Results Among the participants (mean age at entry, 63.6 years ± 9.6 [SD]), 1273, 819, and 227 women with PHBC completed year 1, 2, and 3 screening, respectively. For observer 1, year 1 cancer yield was 20 of 1273 (15.7 per 1000 screenings) for DBT and 29 of 1273 (22.8 per 1000 screenings; ICDR, 7.1 per 1000 screenings [95% CI: 3.2, 13.4]) for DBT plus CEM (P < .001). Year 2 plus 3 cancer yield was four of 1046 (3.8 per 1000 screenings) for DBT and eight of 1046 (7.6 per 1000 screenings; ICDR, 3.8 per 1000 screenings [95% CI: 1.0, 7.6]) for DBT plus CEM (P = .001). Year 1 recall rate for observer 1 was 103 of 1273 (8.1%) for (incidence) DBT alone and 187 of 1273 (14.7%) for DBT plus CEM (difference = 84 of 1273, 6.6% [95% CI: 5.3, 8.1]; P < .001). Year 2 plus 3 recall rate was 40 of 1046 (3.8%) for DBT and 92 of 1046 (8.8%) for DBT plus CEM (difference = 52 of 1046, 5.0% [95% CI: 3.7, 6.3]; P < .001). In 18 breasts with cancer detected only at CEM after integration of both observers, 13 (72%) cancers were invasive (median tumor size, 0.6 cm) and eight of nine (88%) with staging were N0. Among 1883 screenings with adequate reference standard, there were three interval cancers (one at the scar, two in axillae). Conclusion CEM added to DBT increased early breast cancer detection each year in women with PHBC, with an accompanying approximately 5.0%-6.6% recall rate increase. Clinical trial registration no. NCT04085510 © RSNA, 2024 Supplemental material is available for this article.


Subject(s)
Breast Neoplasms , Contrast Media , Mammography , Humans , Female , Breast Neoplasms/diagnostic imaging , Mammography/methods , Prospective Studies , Middle Aged , Early Detection of Cancer/methods , Aged , Radiographic Image Enhancement/methods , Breast/diagnostic imaging
2.
J Breast Imaging ; 5(2): 148-158, 2023 Mar 20.
Article in English | MEDLINE | ID: mdl-38416936

ABSTRACT

OBJECTIVE: Evaluate lesion visibility and radiologist confidence during contrast-enhanced mammography (CEM)-guided biopsy. METHODS: Women with BI-RADS ≥4A enhancing breast lesions were prospectively recruited for 9-g vacuum-assisted CEM-guided biopsy. Breast density, background parenchymal enhancement (BPE), lesion characteristics (enhancement and conspicuity), radiologist confidence (scale 1-5), and acquisition times were collected. Signal intensities in specimens were analyzed. Patient surveys were collected. RESULTS: A cohort of 28 women aged 40-81 years (average 57) had 28 enhancing lesions (7/28, 25% malignant). Breast tissue was scattered (10/28, 36%) or heterogeneously dense (18/28, 64%) with minimal (12/28, 43%), mild (7/28, 25%), or moderate (9/28, 32%) BPE on CEM. Twelve non-mass enhancements, 11 masses, 3 architectural distortions, and 2 calcification groups demonstrated weak (12/28, 43%), moderate (14/28, 50%), or strong (2/28, 7%) enhancement. Specimen radiography demonstrated lesion enhancement in 27/28 (96%). Radiologists reported complete lesion removal on specimen radiography in 8/28 (29%). Average time from contrast injection to specimen radiography was 18 minutes (SD = 5) and, to post-procedure mammogram (PPM), 34 minutes (SD = 10). Contrast-enhanced mammography PPM was performed in 27/28 cases; 13/19 (68%) of incompletely removed lesions on specimen radiography showed residual enhancement; 6/19 (32%) did not. Across all time points, average confidence was 2.2 (SD = 1.2). Signal intensities of enhancing lesions were similar to iodine. Patients had an overall positive assessment. CONCLUSION: Lesion enhancement persisted through PPM and was visible on low energy specimen radiography, with an average "confident" score. Contrast-enhanced mammography-guided breast biopsy is easily implemented clinically. Its availability will encourage adoption of CEM.


Subject(s)
Contrast Media , Mammography , Female , Humans , Mammography/methods , Breast/diagnostic imaging , Biopsy, Needle/methods , Image-Guided Biopsy
3.
Nat Commun ; 12(1): 7281, 2021 12 14.
Article in English | MEDLINE | ID: mdl-34907229

ABSTRACT

While active efforts are advancing medical artificial intelligence (AI) model development and clinical translation, safety issues of the AI models emerge, but little research has been done. We perform a study to investigate the behaviors of an AI diagnosis model under adversarial images generated by Generative Adversarial Network (GAN) models and to evaluate the effects on human experts when visually identifying potential adversarial images. Our GAN model makes intentional modifications to the diagnosis-sensitive contents of mammogram images in deep learning-based computer-aided diagnosis (CAD) of breast cancer. In our experiments the adversarial samples fool the AI-CAD model to output a wrong diagnosis on 69.1% of the cases that are initially correctly classified by the AI-CAD model. Five breast imaging radiologists visually identify 29%-71% of the adversarial samples. Our study suggests an imperative need for continuing research on medical AI model's safety issues and for developing potential defensive solutions against adversarial attacks.


Subject(s)
Artificial Intelligence , Diagnosis, Computer-Assisted/methods , Radiologists , Breast/diagnostic imaging , Breast Neoplasms/diagnostic imaging , Computer Security , Female , Humans , Mammography , Radiologists/education
SELECTION OF CITATIONS
SEARCH DETAIL