Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Pest Manag Sci ; 80(7): 3640-3649, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38456555

ABSTRACT

BACKGROUND: The potential of copper nanoparticles (Cu-NPs) to be used as an alternative control strategy against olive fruit flies (Bactrocera oleae) with reduced sensitivity to the pyrethroid deltamethrin and the impact of both nanosized and bulk copper hydroxide (Cu(OH)2) on the insect's reproductive and endosymbiotic parameters were investigated. RESULTS: The application of nanosized and bulk copper applied by feeding resulted in significant levels of adult mortality, comparable to or surpassing those achieved with deltamethrin at recommended doses. Combinations of Cu-NPs or copper oxide nanoparticles (CuO-NPs) with deltamethrin significantly enhanced the insecticide's efficacy against B. oleae adults. When combined with deltamethrin, Cu-NPs significantly reduced the mean total number of offspring compared with the control, and the number of stings, pupae, female and total number of offspring compared with the insecticide alone. Both bulk and nanosized copper negatively affected the abundance of the endosymbiotic bacterium Candidatus Erwinia dacicola which is crucial for the survival of B. oleae larvae. CONCLUSION: The Cu-NPs can aid the control of B. oleae both by reducing larval survival and by enhancing deltamethrin performance in terms of toxicity and reduced fecundity, providing an effective anti-resistance tool and minimizing the environmental footprint of synthetic pesticides by reducing the required doses for the control of the pest. © 2024 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Subject(s)
Copper , Fertility , Insecticides , Metal Nanoparticles , Pyrethrins , Tephritidae , Animals , Tephritidae/drug effects , Tephritidae/physiology , Copper/pharmacology , Fertility/drug effects , Insecticides/pharmacology , Female , Pyrethrins/pharmacology , Symbiosis , Nitriles/pharmacology , Larva/drug effects , Larva/growth & development , Male , Insecticide Resistance
2.
Pest Manag Sci ; 79(4): 1615-1622, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36562265

ABSTRACT

BACKGROUND: Insecticide resistance has emerged in various western flower thrips (WFT) populations across the world, threatening the efficiency of chemical control applications. Elucidation of insecticide resistance mechanisms at the molecular level provides markers for the development of diagnostics to monitor the trait and support evidence-based resistance management. RESULTS: TaqMan and Droplet Digital polymerase chain reaction (ddPCR) diagnostics were developed and validated, against Sanger sequencing, in individual and pooled WFT samples respectively, for the G275E mutation (nicotinic acetylcholine receptor α6 gene, nAChR α6) associated with resistance to nAChR allosteric modulators, site I (spinosyns); L1014F, T929I, T929C and T292V mutations (voltage-gated sodium channel gene, vgsc) linked with pyrethroid resistance; and I1017M (chitin synthase 1 gene, chs1) conferring resistance to growth inhibitors affecting CHS1 (benzoylureas). The detection limits of ddPCR assays for mutant allelic frequencies (MAF) were in the range of 0.1%-0.2%. The assays were applied in nine WFT field populations from Crete, Greece. The G275E (MAF = 29.66%-100.0%), T929I and T929V (combined MAF = 100%), L1014F (MAF = 11.01%-37.29%), and I1017M (MAF = 17.74%-51.07%) mutations were present in all populations. CONCLUSION: The molecular diagnostics panel that was developed in this study can facilitate the quick and sensitive resistance monitoring of WFT populations at the molecular level, to support evidence-based insecticide resistance management strategies. © 2022 Society of Chemical Industry.


Subject(s)
Insecticides , Thysanoptera , Animals , Insecticide Resistance , Insecticides/pharmacology , Pathology, Molecular , Mutation
3.
Environ Entomol ; 50(6): 1474-1482, 2021 12 17.
Article in English | MEDLINE | ID: mdl-34487162

ABSTRACT

Xylella fastidiosa Wells et al. (Xanthomonadales: Xanthomonadaceae) is a xylem inhabiting bacterium which is exclusively transmitted by xylem sap feeding insects. Among them, Philaenus spumarius Linnaeus and Neophilaenus campestris Fallén are the most abundant species in Europe. During 2018 and 2019 a survey was conducted in olive groves in Greece aimed to improve the knowledge about the biology and ecology of those spittlebugs in areas with Mediterranean climate. Moreover, the host preference of the nymphs was studied. The nymphs of P. spumarius and N. campestris were observed between early March and middle May depending on geographic location and year. The spittlebug adults were present during two periods every year, one in spring and another one in autumn and early winter. During summer months the spittlebugs were totally absent from olive groves. Our observation on host plant selection revealed that there was a strong preference of N. campestris nymphs for plants belonging to the family Poaceae. On the contrary, P. spumarius nymphs were polyphagous. The most preferable plants for the nymphs of this species belonged to the families Asteraceae and Fabaceae. The importance of these findings for control measures for these spittlebugs is discussed.


Subject(s)
Hemiptera , Olea , Xylella , Animals , Greece , Plant Diseases , Seasons
4.
Insects ; 11(12)2020 Dec 02.
Article in English | MEDLINE | ID: mdl-33276441

ABSTRACT

In 2017 and 2018, a field survey was initiated on Greek olive orchards to investigate the attractiveness of bait spray applications and the impact of cover and bait sprays applied against the olive fruit fly Bactrocera oleae (Diptera: Tephritidae), on the honeybee, Apis mellifera L. and bumblebees Bombus terrestris, by investigating the pesticides' residual prevalence. Bee colonies were evenly distributed in three sites located on coastal areas of Western Crete and visited almost weekly between July and October. Samples collected, were analyzed using existing or developed-optimized liquid and gas chromatographic methods. In bee samples, concentrations varied from 0.0013 to 2.3 mg/kg for dimethoate, from 0.0013-0.059 mg/kg for its metabolite omethoate, and from 0.0035 to 0.63 mg/kg regarding the pyrethroids, ß-cyfluthrin and λ-cyhalothrin. In one bee sample dimethoate concentration exceeded both acute oral and contact median lethal dose (LD50). Residue findings in bees, along with verified olive oil residues corroborated that those insecticides had been applied in the olive orchards and transferred to bees. The possibility of non-target effects of the bait sprays to the bees, as well as the impact of the contaminated olive to the bees are discussed.

5.
Environ Sci Pollut Res Int ; 25(1): 479-489, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29047054

ABSTRACT

Field and lab trials took place in Crete (July to September 2016), concerning the residual degradation and toxicity of seven active ingredients applied as bait sprays against the olive fruit fly. Highest residues were recorded in olive leaves for dimethoate and phosmet (~ 60 mg/kg) immediately after application (day 1+), while a threefold and fivefold reduction was observed 1 week later, respectively. Residues of pyrethroids were determined at lower levels (< 10 mg/kg) but remained almost stable for a longer period of time. Finally, thiacloprid and spinosad residues were determined at 5.81 and 0.19 mg/kg respectively (day 1+), and rapidly decreased below the LOQ. Highest toxicity against the olive fruit fly was observed just right after the application of dimethoate (100%), a-cypermethrin (80%), and L-cyhalothrin (72.92%). Although the toxicity of dimethoate was significantly reduced 1 week after the application (80%) and then minimized, toxicity of pyrethroids remained almost stable (> 60%) for the first 2 weeks and then decreased to 30-40%, which remained stable up to the end of the study (8 weeks). Concerning phosmet, its toxicity ranged from 35 to 56% for 3 weeks with no significant reduction, while spinosad presented a lower toxicity profile (50% only for 1 week). The benefits of these results in the knowledge of insecticide residues and their toxicity against olive fruit fly can be used for improving olive fruit fly control.


Subject(s)
Environmental Monitoring/methods , Insecticides/analysis , Olea/chemistry , Pesticide Residues/analysis , Tephritidae/drug effects , Animals , Greece , Insecticides/pharmacology , Limit of Detection , Olea/growth & development , Pesticide Residues/pharmacology , Plant Leaves/chemistry , Plant Leaves/growth & development , Time Factors
6.
Nat Commun ; 5: 4401, 2014 Jul 21.
Article in English | MEDLINE | ID: mdl-25043228

ABSTRACT

Bacteria contaminate insects and secrete metabolites that may affect insect behaviour and potentially fitness through unknown mechanisms. Here we show that the 'grape-like' odorant 2-aminoacetophenone (2AA), secreted by Pseudomonas aeruginosa (a ubiquitous opportunistic human pathogen), facilitates attraction to food for several fly species including Musca domestica, Ceratitis capitata and Drosophila melanogaster. Constant feeding on 2AA increases the level of long-term colonization of the flies' intestine by P. aeruginosa. Odour perception is necessary for enhanced attraction to food containing 2AA, and expression in the Drosophila olfactory organs of odorant receptors Or49b and Or10a potentiates, while expression of Or85a inhibits, preference for 2AA. Our study shows that 2AA lures the flies to the bacterial source and increases the extent of colonization of the fly intestine by the bacteria that produce it, as a means to facilitate bacterial dissemination to new locations.


Subject(s)
Acetophenones/metabolism , Diptera/physiology , Odorants , Pseudomonas aeruginosa/metabolism , Acetophenones/pharmacology , Animals , Animals, Genetically Modified , Bacterial Load , Behavior, Animal/drug effects , Ceratitis capitata/physiology , Diptera/drug effects , Diptera/microbiology , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Drosophila melanogaster/microbiology , Drosophila melanogaster/physiology , Houseflies/physiology , Intestines/microbiology , Pseudomonas aeruginosa/pathogenicity , Receptors, Odorant/genetics , Receptors, Odorant/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL