Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 14(1): 7470, 2023 11 17.
Article in English | MEDLINE | ID: mdl-37978298

ABSTRACT

Darier disease (DD) is a rare, inherited multi-organ disorder associated with mutations in the ATP2A2 gene. DD patients often have skin involvement characterized by malodorous, inflamed skin and recurrent, severe infections. Therapeutic options are limited and inadequate for the long-term management of this chronic disease. The aim of this study was to characterize the cutaneous immune infiltrate in DD skin lesions in detail and to identify new therapeutic targets. Using gene and protein expression profiling assays including scRNA sequencing, we demonstrate enhanced expression of Th17-related genes and cytokines and increased numbers of Th17 cells in six DD patients. We provide evidence that targeting the IL-17/IL-23 axis in a case series of three DD patients with monoclonal antibodies is efficacious with significant clinical improvement. As DD is a chronic, relapsing disease, our findings might pave the way toward additional options for the long-term management of skin inflammation in patients with DD.


Subject(s)
Darier Disease , Humans , Darier Disease/genetics , Darier Disease/metabolism , Darier Disease/pathology , Interleukin-17/genetics , Interleukin-17/metabolism , Interleukin-23/metabolism , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism , Skin/pathology , Th17 Cells/metabolism
2.
Sci Rep ; 10(1): 11164, 2020 07 07.
Article in English | MEDLINE | ID: mdl-32636404

ABSTRACT

Human skin contains a population of memory T cells that supports tissue homeostasis and provides protective immunity. The study of human memory T cells is often restricted to in vitro studies and to human PBMC serving as primary cell source. Because the tissue environment impacts the phenotype and function of memory T cells, it is crucial to study these cells within their tissue. Here we utilized immunodeficient NOD-scid IL2rγnull (NSG) mice that carried in vivo-generated engineered human skin (ES). ES was generated from human keratinocytes and fibroblasts and was initially devoid of skin-resident immune cells. Upon adoptive transfer of human PBMC, this reductionist system allowed us to study human T cell recruitment from a circulating pool of T cells into non-inflamed human skin in vivo. Circulating human memory T cells preferentially infiltrated ES and showed diverse functional profiles of T cells found in fresh human skin. The chemokine and cytokine microenvironment of ES closely resembled that of non-inflamed human skin. Upon entering the ES T cells assumed a resident memory T cell-like phenotype in the absence of infection, and a proportion of these cutaneous T cells can be locally activated upon injection of monocyte derived dendritic cells (moDCs) that presented Candida albicans. Interestingly, we found that CD69+ memory T cells produced higher levels of effector cytokines in response to Candida albicans, compared to CD69- T cells. Overall, this model has broad utility in many areas of human skin immunology research, including the study of immune-mediated skin diseases.


Subject(s)
Immunologic Memory , Skin/immunology , T-Lymphocytes/immunology , Adult , Animals , CD4-Positive T-Lymphocytes/immunology , Candida albicans/immunology , Female , Heterografts , Humans , Male , Mice , Mice, Inbred NOD , Middle Aged , Skin/cytology , Skin Transplantation , Tissue Engineering
3.
Sci Immunol ; 4(37)2019 07 05.
Article in English | MEDLINE | ID: mdl-31278120

ABSTRACT

Tissue-resident memory T cells (TRM) persist locally in nonlymphoid tissues where they provide frontline defense against recurring insults. TRM at barrier surfaces express the markers CD103 and/or CD69, which function to retain them in epithelial tissues. In humans, neither the long-term migratory behavior of TRM nor their ability to reenter the circulation and potentially migrate to distant tissue sites has been investigated. Using tissue explant cultures, we found that CD4+CD69+CD103+ TRM in human skin can down-regulate CD69 and exit the tissue. In addition, we identified a skin-tropic CD4+CD69-CD103+ population in human lymph and blood that is transcriptionally, functionally, and clonally related to the CD4+CD69+CD103+ TRM population in the skin. Using a skin xenograft model, we confirmed that a fraction of the human cutaneous CD4+CD103+ TRM population can reenter circulation and migrate to secondary human skin sites where they reassume a TRM phenotype. Thus, our data challenge current concepts regarding the strict tissue compartmentalization of CD4+ T cell memory in humans.


Subject(s)
Antigens, CD/immunology , Blood/immunology , CD4-Positive T-Lymphocytes/immunology , Immunologic Memory/immunology , Integrin alpha Chains/immunology , Antigens, CD/blood , Cells, Cultured , Healthy Volunteers , Humans , Integrin alpha Chains/blood , Skin/cytology , Skin/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...