Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 106
Filter
1.
J Exp Clin Cancer Res ; 42(1): 26, 2023 Jan 21.
Article in English | MEDLINE | ID: mdl-36670473

ABSTRACT

BACKGROUND: Individuals with certain chronic inflammatory lung diseases have a higher risk of developing lung cancer (LC). However, the underlying mechanisms remain largely unknown. Here, we hypothesized that chronic exposure to house dust mites (HDM), a common indoor aeroallergen associated with the development of asthma, accelerates LC development through the induction of chronic lung inflammation (CLI).  METHODS: The effects of HDM and heat-inactivated HDM (HI-HDM) extracts were evaluated in two preclinical mouse models of LC (a chemically-induced model using the carcinogen urethane and a genetically-driven model with oncogenic KrasG12D activation in lung epithelial cells) and on murine macrophages in vitro. Pharmacological blockade or genetic deletion of the Nod-like receptor family pyrin domain-containing protein 3 (NLRP3) inflammasome, caspase-1, interleukin-1ß (IL-1ß), and C-C motif chemokine ligand 2 (CCL2) or treatment with an inhaled corticosteroid (ICS) was used to uncover the pro-tumorigenic effect of HDM.  RESULTS: Chronic intranasal (i.n) instillation of HDM accelerated LC development in the two mouse models. Mechanistically, HDM caused a particular subtype of CLI, in which the NLRP3/IL-1ß signaling pathway is chronically activated in macrophages, and made the lung microenvironment conducive to tumor development. The tumor-promoting effect of HDM was significantly decreased by heat treatment of the HDM extract and was inhibited by NLRP3, IL-1ß, and CCL2 neutralization, or ICS treatment. CONCLUSIONS: Collectively, these data indicate that long-term exposure to HDM can accelerate lung tumorigenesis in susceptible hosts (e.g., mice and potentially humans exposed to lung carcinogens or genetically predisposed to develop LC).


Subject(s)
Asthma , Lung Neoplasms , Humans , Animals , Mice , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Pyroglyphidae , Lung/pathology , Asthma/metabolism , Asthma/pathology , Lung Neoplasms/chemically induced , Lung Neoplasms/metabolism , Disease Models, Animal , Tumor Microenvironment
2.
Physiol Rev ; 103(3): 2171-2229, 2023 07 01.
Article in English | MEDLINE | ID: mdl-36603157

ABSTRACT

Anthropogeny is a classic term encompassing transdisciplinary investigations of the origins of the human species. Comparative anthropogeny is a systematic comparison of humans and other living nonhuman hominids (so-called "great apes"), aiming to identify distinctly human features in health and disease, with the overall goal of explaining human origins. We begin with a historical perspective, briefly describing how the field progressed from the earliest evolutionary insights to the current emphasis on in-depth molecular and genomic investigations of "human-specific" biology and an increased appreciation for cultural impacts on human biology. While many such genetic differences between humans and other hominids have been revealed over the last two decades, this information remains insufficient to explain the most distinctive phenotypic traits distinguishing humans from other living hominids. Here we undertake a complementary approach of "comparative physiological anthropogeny," along the lines of the preclinical medical curriculum, i.e., beginning with anatomy and considering each physiological system and in each case considering genetic and molecular components that are relevant. What is ultimately needed is a systematic comparative approach at all levels from molecular to physiological to sociocultural, building networks of related information, drawing inferences, and generating testable hypotheses. The concluding section will touch on distinctive considerations in the study of human evolution, including the importance of gene-culture interactions.


Subject(s)
Biological Evolution , Hominidae , Animals , Humans , Hominidae/genetics , Genome , Phenotype
3.
Lipids Health Dis ; 21(1): 113, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-36320028

ABSTRACT

BACKGROUND: Keloid formation following trauma or surgery is common among darkly pigmented individuals. Since lipoprotein(a) [Lp(a)] has been postulated to have a putative role in wound healing, and also mediates atherosclerotic cardiovascular disease, it was assessed whether Lp(a), its associated oxidized phospholipids and other oxidation-specific biomarkers were associated with keloid formation. METHODS: This case-control study included darkly pigmented individuals of African ancestry, 100 with keloid scarring and 100 non-keloid controls. The lipid panel, hsCRP, Lp(a), oxidized phospholipids on apolipoprotein B-100 (OxPL-apoB), IgG and IgM apoB-immune complexes and IgG and IgM autoantibodies to a malondialdehyde mimotope (MDA-mimotope) were measured. Immunohistochemistry of keloid specimens was performed for both Lp(a) and OxPL staining. RESULTS: Cases and controls were well matched for age, sex and lipid profile. Mean Lp(a) (57.8 vs. 44.2 mg/dL; P = 0.01, OxPL-apoB 17.4 vs. 15.7 nmol/L; P = 0.009) and IgG and IgM apoB-immune complexes and IgG and IgM MDA-mimotope levels were significantly higher in keloid cases. Keloid tissue stained strongly for OxPL. CONCLUSION: Darkly pigmented individuals of African ancestry with keloids have higher plasma levels of Lp(a), OxPL-apoB and oxidation-specific epitopes. The commonality of excessive wound healing in keloids and chronic complications from coronary revascularization suggests avenues of investigation to define a common mechanism driven by Lp(a) and the innate response to oxidized lipids.


Subject(s)
Antigen-Antibody Complex , Phospholipids , Humans , Epitopes , Case-Control Studies , Lipoprotein(a) , Apolipoproteins B , Apolipoprotein B-100 , Oxidation-Reduction , Malondialdehyde , Immunoglobulin M , Immunoglobulin G
4.
Glycobiology ; 32(12): 1101-1115, 2022 11 22.
Article in English | MEDLINE | ID: mdl-36048714

ABSTRACT

Vertebrate sialic acids (Sias) display much diversity in modifications, linkages, and underlying glycans. Slide microarrays allow high-throughput explorations of sialoglycan-protein interactions. A microarray presenting ~150 structurally defined sialyltrisaccharides with various Sias linkages and modifications still poses challenges in planning, data sorting, visualization, and analysis. To address these issues, we devised a simple 9-digit code for sialyltrisaccharides with terminal Sias and underlying two monosaccharides assigned from the nonreducing end, with 3 digits assigning a monosaccharide, its modifications, and linkage. Calculations based on the encoding system reveal >113,000 likely linear sialyltrisaccharides in nature. Notably, a biantennary N-glycan with 2 terminal sialyltrisaccharides could thus have >1010 potential combinations and a triantennary N-glycan with 3 terminal sequences, >1015 potential combinations. While all possibilities likely do not exist in nature, sialoglycans encode enormous diversity. While glycomic approaches are used to probe such diverse sialomes, naturally occurring bacterial AB5 toxin B subunits are simpler tools to track the dynamic sialome in biological systems. Sialoglycan microarray was utilized to compare sialoglycan-recognizing bacterial toxin B subunits. Unlike the poor correlation between B subunits and species phylogeny, there is stronger correlation with Sia-epitope preferences. Further supporting this pattern, we report a B subunit (YenB) from Yersinia enterocolitica (broad host range) recognizing almost all sialoglycans in the microarray, including 4-O-acetylated-Sias not recognized by a Yersinia pestis orthologue (YpeB). Differential Sia-binding patterns were also observed with phylogenetically related B subunits from Escherichia coli (SubB), Salmonella Typhi (PltB), Salmonella Typhimurium (ArtB), extra-intestinal E.coli (EcPltB), Vibrio cholera (CtxB), and cholera family homologue of E. coli (EcxB).


Subject(s)
Bacterial Toxins , Escherichia coli , Salmonella typhi/chemistry , Sialic Acids , Bacterial Toxins/chemistry , Polysaccharides , Cholera Toxin
5.
Glycobiology ; 32(12): 1116-1136, 2022 11 22.
Article in English | MEDLINE | ID: mdl-35926090

ABSTRACT

Glycans that are abundantly displayed on vertebrate cell surface and secreted molecules are often capped with terminal sialic acids (Sias). These diverse 9-carbon-backbone monosaccharides are involved in numerous intrinsic biological processes. They also interact with commensals and pathogens, while undergoing dynamic changes in time and space, often influenced by environmental conditions. However, most of this sialoglycan complexity and variation remains poorly characterized by conventional techniques, which often tend to destroy or overlook crucial aspects of Sia diversity and/or fail to elucidate native structures in biological systems, i.e. in the intact sialome. To date, in situ detection and analysis of sialoglycans has largely relied on the use of plant lectins, sialidases, or antibodies, whose preferences (with certain exceptions) are limited and/or uncertain. We took advantage of naturally evolved microbial molecules (bacterial adhesins, toxin subunits, and viral hemagglutinin-esterases) that recognize sialoglycans with defined specificity to delineate 9 classes of sialoglycan recognizing probes (SGRPs: SGRP1-SGRP9) that can be used to explore mammalian sialome changes in a simple and systematic manner, using techniques common in most laboratories. SGRP candidates with specificity defined by sialoglycan microarray studies were engineered as tagged probes, each with a corresponding nonbinding mutant probe as a simple and reliable negative control. The optimized panel of SGRPs can be used in methods commonly available in most bioscience labs, such as ELISA, western blot, flow cytometry, and histochemistry. To demonstrate the utility of this approach, we provide examples of sialoglycome differences in tissues from C57BL/6 wild-type mice and human-like Cmah-/- mice.


Subject(s)
Hemagglutinins, Viral , Sialic Acids , Humans , Mice , Animals , Mice, Inbred C57BL , Sialic Acids/chemistry , Mammals/metabolism , Polysaccharides
6.
J Biol Chem ; 298(5): 101900, 2022 05.
Article in English | MEDLINE | ID: mdl-35398357

ABSTRACT

Many pathogenic bacteria secrete AB5 toxins that can be virulence factors. Cytotoxic A subunits are delivered to the cytosol following B subunit binding to specific host cell surface glycans. Some B subunits are not associated with A subunits, for example, YpeB of Yersinia pestis, the etiologic agent of plague. Plague cannot be eradicated because of Y. pestis' adaptability to numerous hosts. We previously showed selective binding of other B5 pentamers to a sialoglycan microarray, with sialic acid (Sia) preferences corresponding to those prominently expressed by various hosts, for example, N-acetylneuraminic acid (Neu5Ac; prominent in humans) or N-glycolylneuraminic acid (Neu5Gc; prominent in ruminant mammals and rodents). Here, we report that A subunit phylogeny evolved independently of B subunits and suggest a future B subunit nomenclature based on bacterial species names. We also found via phylogenetic analysis of B subunits, which bind Sias, that homologous molecules show poor correlation with species phylogeny. These data indicate ongoing lateral gene transfers between species, including mixing of A and B subunits. Consistent with much broader host range of Y. pestis, we show that YpeB recognizes all mammalian Sia types, except for 4-O-acetylated ones. Notably, YpeB alone causes dose-dependent cytotoxicity, which is abolished by a mutation (Y77F) eliminating Sia recognition, suggesting that cell proliferation and death are promoted via lectin-like crosslinking of cell surface sialoglycoconjugates. These findings help explain the host range of Y. pestis and could be important for pathogenesis. Overall, our data indicate ongoing rapid evolution of both host Sias and pathogen toxin-binding properties.


Subject(s)
Bacteria , Bacterial Toxins , Host Specificity , Polysaccharides , Animals , Bacteria/classification , Bacteria/metabolism , Bacterial Toxins/metabolism , Bacterial Toxins/toxicity , Evolution, Molecular , Mammals/metabolism , N-Acetylneuraminic Acid/metabolism , Phylogeny , Plague/microbiology , Polysaccharides/metabolism , Protein Binding , Protein Subunits/metabolism , Yersinia pestis/metabolism
7.
Neoplasia ; 23(11): 1137-1143, 2021 11.
Article in English | MEDLINE | ID: mdl-34715561

ABSTRACT

Early lung carcinoma development may be modulated by innate host cellular mechanisms that promote tumor growth and invasion. We recently identified how a loss-of-function mutation in the glycan sulfating enzyme N-deacetylase/N-sulfotransferase-1 (Ndst1; involved in heparan sulfate biosynthesis) targeted to antigen presenting cells (APCs) may augment acquired anti-tumor T cell immune mechanisms. Crossing this mutation (Ndst1f/f CD11cCre+) onto a model of inducible spontaneous Kras mutant lung cancer [CCSP-rtTA; (tetO7) CMV-Kras-G12D] allowed us to examine how the APC mutation affects the formation and growth of early lung carcinoma. We examined early bronchocentric adenoma formation in the model, and the frequency of such events was significantly reduced on the mutant background. This was associated with significant reductions in tumor associated FOXP3+ cellular infiltration and CD163+ M2-type macrophage infiltration. The findings evolved prior to effector CD8+ T cell infiltration into tumors. The impact of this unique glycan under-sulfating mutation on inhibiting early Kras G12D mutant bronchocentric adenoma formation along with a cellular phenotype of inhibited tumor infiltration by cells involved in suppressive T-regulatory cell signaling (FOXP3+ cells) or tumor-permissive M2 macrophage functions (CD163+ cells) provides insight on how glycan targeting may modulate innate cellular mechanisms during early lung tumor development. The findings may also impact the future design of host-centered immunologic anti-tumor therapeutic strategies.


Subject(s)
Adenoma/pathology , CD11c Antigen/metabolism , Lung Neoplasms/pathology , Mutation , Myeloid Cells/immunology , Polysaccharides/chemistry , Proto-Oncogene Proteins p21(ras)/genetics , Adenoma/etiology , Adenoma/metabolism , Animals , CD8-Positive T-Lymphocytes , Heparitin Sulfate/chemistry , Humans , Lung Neoplasms/etiology , Lung Neoplasms/metabolism , Lymphocytes, Tumor-Infiltrating/immunology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Myeloid Cells/metabolism , Myeloid Cells/pathology , Sulfates/metabolism , Sulfotransferases/physiology , T-Lymphocytes, Regulatory/immunology
8.
Arterioscler Thromb Vasc Biol ; 41(11): 2730-2739, 2021 11.
Article in English | MEDLINE | ID: mdl-34587757

ABSTRACT

Objective: Species-specific pseudogenization of the CMAH gene during human evolution eliminated common mammalian sialic acid N-glycolylneuraminic acid (Neu5Gc) biosynthesis from its precursor N-acetylneuraminic acid (Neu5Ac). With metabolic nonhuman Neu5Gc incorporation into endothelia from red meat, the major dietary source, anti-Neu5Gc antibodies appeared. Human-like Ldlr-/-Cmah-/- mice on a high-fat diet supplemented with a Neu5Gc-enriched mucin, to mimic human red meat consumption, suffered increased atherosclerosis if human-like anti-Neu5Gc antibodies were elicited. Approach and Results: We now ask whether interventional Neu5Ac feeding attenuates metabolically incorporated Neu5Gc-mediated inflammatory acceleration of atherogenesis in this Cmah-/-Ldlr-/- model system. Switching to a Neu5Gc-free high-fat diet or adding a 5-fold excess of Collocalia mucoid-derived Neu5Ac in high-fat diet protects against accelerated atherosclerosis. Switching completely from a Neu5Gc-rich to a Neu5Ac-rich diet further reduces severity. Remarkably, feeding Neu5Ac-enriched high-fat diet alone has a substantial intrinsic protective effect against atherosclerosis in Ldlr-/- mice even in the absence of dietary Neu5Gc but only in the human-like Cmah-null background. Conclusions: Interventional Neu5Ac feeding can mitigate or prevent the red meat/Neu5Gc-mediated increased risk for atherosclerosis, and has an intrinsic protective effect, even in the absence of Neu5Gc feeding. These findings suggest that similar interventions should be tried in humans and that Neu5Ac-enriched diets alone should also be investigated further.


Subject(s)
Aorta/metabolism , Aortic Diseases/prevention & control , Atherosclerosis/prevention & control , Dietary Supplements , N-Acetylneuraminic Acid/administration & dosage , Neuraminic Acids/administration & dosage , Plaque, Atherosclerotic , Animal Feed , Animals , Antibodies/metabolism , Aorta/pathology , Aortic Diseases/genetics , Aortic Diseases/metabolism , Aortic Diseases/pathology , Atherosclerosis/genetics , Atherosclerosis/metabolism , Atherosclerosis/pathology , Diet, High-Fat , Disease Models, Animal , Foam Cells/metabolism , Foam Cells/pathology , Humans , Male , Mice, Inbred C57BL , Mice, Knockout , Mixed Function Oxygenases/genetics , Mixed Function Oxygenases/metabolism , N-Acetylneuraminic Acid/metabolism , Neuraminic Acids/immunology , Neuraminic Acids/metabolism , Pan troglodytes , Receptors, LDL/genetics , Receptors, LDL/metabolism , Sialadenitis/metabolism , Sialadenitis/pathology , THP-1 Cells
9.
mBio ; 12(5): e0118121, 2021 10 26.
Article in English | MEDLINE | ID: mdl-34544271

ABSTRACT

Hepatic failure is an important risk factor for poor outcome in septic patients. Using a chemical tagging workflow and high-resolution mass spectrometry, we demonstrate that rapid proteome remodeling of the vascular surfaces precedes hepatic damage in a murine model of Staphylococcus aureus sepsis. These early changes include vascular deposition of neutrophil-derived proteins, shedding of vascular receptors, and altered levels of heparin/heparan sulfate-binding factors. Modification of endothelial heparan sulfate, a major component of the vascular glycocalyx, diminishes neutrophil trafficking to the liver and reduces hepatic coagulopathy and organ damage during the systemic inflammatory response to infection. Modifying endothelial heparan sulfate likewise reduces neutrophil trafficking in sterile hepatic injury, reflecting a more general role of heparan sulfate contribution to the modulation of leukocyte behavior during inflammation. IMPORTANCE Vascular glycocalyx remodeling is critical to sepsis pathology, but the glycocalyx components that contribute to this process remain poorly characterized. This article shows that during Staphylococcus aureus sepsis, the liver vascular glycocalyx undergoes dramatic changes in protein composition associated with neutrophilic activity and heparin/heparan sulfate binding, all before organ damage is detectable by standard circulating liver damage markers or histology. Targeted manipulation of endothelial heparan sulfate modulates S. aureus sepsis-induced hepatotoxicity by controlling the magnitude of neutrophilic infiltration into the liver in both nonsterile and sterile injury. These data identify an important vascular glycocalyx component that impacts hepatic failure during nonsterile and sterile injury.


Subject(s)
Endothelial Cells/metabolism , Heparitin Sulfate/genetics , Heparitin Sulfate/metabolism , Neutrophil Activation , Neutrophils/pathology , Sepsis/microbiology , Staphylococcus aureus/immunology , Animals , Disease Models, Animal , Endothelial Cells/immunology , Female , Glycocalyx/metabolism , Glycocalyx/pathology , Liver/immunology , Liver/microbiology , Liver/pathology , Lung/immunology , Lung/microbiology , Lung/pathology , Male , Mice , Mice, Inbred C57BL , Staphylococcus aureus/pathogenicity
10.
FASEB Bioadv ; 3(2): 69-82, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33615152

ABSTRACT

Compared with our closest living evolutionary cousins, humans appear unusually prone to develop carcinomas (cancers arising from epithelia). The SIGLEC12 gene, which encodes the Siglec-XII protein expressed on epithelial cells, has several uniquely human features: a fixed homozygous missense mutation inactivating its natural ligand recognition property; a polymorphic frameshift mutation eliminating full-length protein expression in ~60%-70% of worldwide human populations; and, genomic features suggesting a negative selective sweep favoring the pseudogene state. Despite the loss of canonical sialic acid binding, Siglec-XII still recruits Shp2 and accelerates tumor growth in a mouse model. We hypothesized that dysfunctional Siglec-XII facilitates human carcinoma progression, correlating with known tumorigenic signatures of Shp2-dependent cancers. Immunohistochemistry was used to detect Siglec-XII expression on tissue microarrays. PC-3 prostate cancer cells were transfected with Siglec-XII and transcription of genes enriched with Siglec-XII was determined. Genomic SIGLEC12 status was determined for four different cancer cohorts. Finally, a dot blot analysis of human urinary epithelial cells was established to determine the Siglec-XII expressors versus non-expressors. Forced expression in a SIGLEC12 null carcinoma cell line enriched transcription of genes associated with cancer progression. While Siglec-XII was detected as expected in ~30%-40% of normal epithelia, ~80% of advanced carcinomas showed strong expression. Notably, >80% of late-stage colorectal cancers had a functional SIGLEC12 allele, correlating with overall increased mortality. Thus, advanced carcinomas are much more likely to occur in individuals whose genomes have an intact SIGLEC12 gene, likely because the encoded Siglec-XII protein recruits Shp2-related oncogenic pathways. The finding has prognostic, diagnostic, and therapeutic implications.

11.
J Immunol ; 205(11): 3122-3129, 2020 12 01.
Article in English | MEDLINE | ID: mdl-33077643

ABSTRACT

IL-17D is a cytokine that belongs to the IL-17 family and is conserved in vertebrates and invertebrates. In contrast to IL-17A and IL-17F, which are expressed in Th17 cells, IL-17D is expressed broadly in nonimmune cells. IL-17D can promote immune responses to cancer and viruses in part by inducing chemokines and recruiting innate immune cells such as NK cells. Although bacterial infection can induce IL-17D in fish and invertebrates, the role of mammalian IL-17D in antibacterial immunity has not been established. To determine whether IL-17D has a role in mediating host defense against bacterial infections, we studied i.p. infection by group A Streptococcus (GAS) in wild-type (WT) and Il17d -/- mice. Compared with WT animals, mice deficient in IL-17D experienced decreased survival, had greater weight loss, and showed increased bacterial burden in the kidney and peritoneal cavity following GAS challenge. In WT animals, IL-17D transcript was induced by GAS infection and correlated to increased levels of chemokine CCL2 and greater neutrophil recruitment. Of note, GAS-mediated IL-17D induction in nonimmune cells required live bacteria, suggesting that processes beyond recognition of pathogen-associated molecular patterns were required for IL-17D induction. Based on our results, we propose a model in which nonimmune cells can discriminate between nonviable and viable GAS cells, responding only to the latter by inducing IL-17D.


Subject(s)
Interleukin-27/immunology , Streptococcal Infections/immunology , Streptococcus/immunology , Animals , Chemokine CCL2/immunology , Immunity, Innate/immunology , Killer Cells, Natural/immunology , Mice , Mice, Inbred C57BL , Neutrophils/immunology , Pathogen-Associated Molecular Pattern Molecules/immunology , Th17 Cells/immunology
12.
Life Sci Alliance ; 3(10)2020 10.
Article in English | MEDLINE | ID: mdl-32817263

ABSTRACT

Tumorigenesis in different segments of the intestinal tract involves tissue-specific oncogenic drivers. In the colon, complement component 3 (C3) activation is a major contributor to inflammation and malignancies. By contrast, tumorigenesis in the small intestine involves fatty acid-binding protein 1 (FABP1). However, little is known of the upstream mechanisms driving their expressions in different segments of the intestinal tract. Here, we report that the RNA-binding protein DDX5 binds to the mRNA transcripts of C3 and Fabp1 to augment their expressions posttranscriptionally. Knocking out DDX5 in epithelial cells protected mice from intestinal tumorigenesis and dextran sodium sulfate (DSS)-induced colitis. Identification of DDX5 as a common upstream regulator of tissue-specific oncogenic molecules provides an excellent therapeutic target for intestinal diseases.


Subject(s)
Complement C3/metabolism , DEAD-box RNA Helicases/metabolism , Fatty Acid-Binding Proteins/metabolism , Animals , Carcinogenesis/metabolism , Colitis/chemically induced , Complement C3/genetics , DEAD-box RNA Helicases/physiology , Dextran Sulfate/adverse effects , Epithelial Cells/metabolism , Fatty Acid-Binding Proteins/genetics , Female , Gene Expression/genetics , Gene Expression Regulation, Neoplastic/genetics , Inflammation , Intestinal Mucosa/metabolism , Intestine, Small/metabolism , Intestines/pathology , Male , Mice , Mice, Inbred C57BL , Oncogenes/genetics , Signal Transduction
13.
Genome Biol Evol ; 12(7): 1040-1050, 2020 07 01.
Article in English | MEDLINE | ID: mdl-32556248

ABSTRACT

Human-specific pseudogenization of the CMAH gene eliminated the mammalian sialic acid (Sia) Neu5Gc (generating an excess of its precursor Neu5Ac), thus changing ubiquitous cell surface "self-associated molecular patterns" that modulate innate immunity via engagement of CD33-related-Siglec receptors. The Alu-fusion-mediated loss-of-function of CMAH fixed ∼2-3 Ma, possibly contributing to the origins of the genus Homo. The mutation likely altered human self-associated molecular patterns, triggering multiple events, including emergence of human-adapted pathogens with strong preference for Neu5Ac recognition and/or presenting Neu5Ac-containing molecular mimics of human glycans, which can suppress immune responses via CD33-related-Siglec engagement. Human-specific alterations reported in some gene-encoding Sia-sensing proteins suggested a "hotspot" in hominin evolution. The availability of more hominid genomes including those of two extinct hominins now allows full reanalysis and evolutionary timing. Functional changes occur in 8/13 members of the human genomic cluster encoding CD33-related Siglecs, all predating the human common ancestor. Comparisons with great ape genomes indicate that these changes are unique to hominins. We found no evidence for strong selection after the Human-Neanderthal/Denisovan common ancestor, and these extinct hominin genomes include almost all major changes found in humans, indicating that these changes in hominin sialobiology predate the Neanderthal-human divergence ∼0.6 Ma. Multiple changes in this genomic cluster may also explain human-specific expression of CD33rSiglecs in unexpected locations such as amnion, placental trophoblast, pancreatic islets, ovarian fibroblasts, microglia, Natural Killer(NK) cells, and epithelia. Taken together, our data suggest that innate immune interactions with pathogens markedly altered hominin Siglec biology between 0.6 and 2 Ma, potentially affecting human evolution.


Subject(s)
Evolution, Molecular , Hominidae/genetics , Sialic Acid Binding Ig-like Lectin 3/genetics , Animals , Gene Expression , Genome , Hominidae/immunology , Humans , Immunity, Innate/genetics , Multigene Family , Mutation , Polymorphism, Genetic , Selection, Genetic
15.
Nat Commun ; 10(1): 4656, 2019 10 11.
Article in English | MEDLINE | ID: mdl-31604940

ABSTRACT

Sepsis is a life-threatening condition triggered by a dysregulated host response to microbial infection resulting in vascular dysfunction, organ failure and death. Here we provide a semi-quantitative atlas of the murine vascular cell-surface proteome at the organ level, and how it changes during sepsis. Using in vivo chemical labeling and high-resolution mass spectrometry, we demonstrate the presence of a vascular proteome that is perfusable and shared across multiple organs. This proteome is enriched in membrane-anchored proteins, including multiple regulators of endothelial barrier functions and innate immunity. Further, we automated our workflows and applied them to a murine model of methicillin-resistant Staphylococcus aureus (MRSA) sepsis to unravel changes during systemic inflammatory responses. We provide an organ-specific atlas of both systemic and local changes of the vascular proteome triggered by sepsis. Collectively, the data indicates that MRSA-sepsis triggers extensive proteome remodeling of the vascular cell surfaces, in a tissue-specific manner.


Subject(s)
Methicillin-Resistant Staphylococcus aureus/immunology , Proteome , Sepsis/metabolism , Staphylococcal Infections/complications , Vascular Diseases/microbiology , Animals , Hyaluronic Acid/metabolism , Liver/pathology , Mice , Mice, Inbred C57BL , Multiple Organ Failure/microbiology , Proteomics , Staphylococcal Infections/immunology , Vascular Diseases/metabolism , Vascular Remodeling
16.
Proc Natl Acad Sci U S A ; 116(32): 16036-16045, 2019 08 06.
Article in English | MEDLINE | ID: mdl-31332008

ABSTRACT

Cardiovascular disease (CVD) events due to atherosclerosis cause one-third of worldwide deaths and risk factors include physical inactivity, age, dyslipidemia, hypertension, diabetes, obesity, smoking, and red meat consumption. However, ∼15% of first-time events occur without such factors. In contrast, coronary events are extremely rare even in closely related chimpanzees in captivity, despite human-like CVD-risk-prone blood lipid profiles, hypertension, and mild atherosclerosis. Similarly, red meat-associated enhancement of CVD event risk does not seem to occur in other carnivorous mammals. Thus, heightened CVD risk may be intrinsic to humans, and genetic changes during our evolution need consideration. Humans exhibit a species-specific deficiency of the sialic acid N-glycolylneuraminic acid (Neu5Gc), due to pseudogenization of cytidine monophosphate-N-acetylneuraminic acid (Neu5Ac) hydroxylase (CMAH), which occurred in hominin ancestors ∼2 to 3 Mya. Ldlr-/- mice with human-like Cmah deficiency fed a sialic acids (Sias)-free high-fat diet (HFD) showed ∼1.9-fold increased atherogenesis over Cmah wild-type Ldlr-/- mice, associated with elevated macrophage cytokine expression and enhanced hyperglycemia. Human consumption of Neu5Gc (from red meat) acts as a "xeno-autoantigen" via metabolic incorporation into endogenous glycoconjugates, as interactions with circulating anti-Neu5Gc "xeno-autoantibodies" potentiate chronic inflammation ("xenosialitis"). Cmah-/-Ldlr-/- mice immunized with Neu5Gc-bearing antigens to generate human-like anti-Neu5Gc antibodies suffered a ∼2.4-fold increased atherosclerosis on a Neu5Gc-rich HFD, compared with Neu5Ac-rich or Sias-free HFD. Lesions in Neu5Gc-immunized and Neu5Gc-rich HFD-fed Cmah-/-Ldlr-/- mice were more advanced but unexplained by lipoprotein or glucose changes. Human evolutionary loss of CMAH likely contributes to atherosclerosis predisposition via multiple intrinsic and extrinsic mechanisms, and future studies could consider this more human-like model.


Subject(s)
Atherosclerosis/enzymology , Mixed Function Oxygenases/deficiency , Animals , Cattle , Cytokines/metabolism , Diet, High-Fat , Female , Humans , Hyperglycemia/pathology , Inflammation/pathology , Macrophages/metabolism , Macrophages/pathology , Male , Mice, Inbred C57BL , Mixed Function Oxygenases/metabolism , Models, Biological , Phenotype , Receptors, LDL/deficiency , Receptors, LDL/metabolism , Sialic Acids/metabolism , Species Specificity
18.
Oncogene ; 38(28): 5599-5611, 2019 07.
Article in English | MEDLINE | ID: mdl-30967626

ABSTRACT

The MST1R (RON) kinase is overexpressed in >80% of human pancreatic cancers, but its role in pancreatic carcinogenesis is unknown. In this study, we examined the relevance of Mst1r kinase to Kras driven pancreatic carcinogenesis using genetically engineered mouse models. In the setting of mutant Kras, Mst1r overexpression increased acinar-ductal metaplasia (ADM), accelerated the progression of pancreatic intraepithelial neoplasia (PanIN), and resulted in the accumulation of (mannose receptor C type 1) MRC1+, (arginase 1) Arg+ macrophages in the tumor microenvironment. Conversely, absence of a functional Mst1r kinase slowed PanIN initiation, resulted in smaller tumors, prolonged survival and a reduced tumor-associated macrophage content. Mst1r expression was associated with increased production of its ligand Mst1, and in orthotopic models, suppression of Mst1 expression resulted in reduced tumor size, changes in macrophage polarization and enhanced T cell infiltration. This study demonstrates the functional significance of Mst1r during pancreatic cancer initiation and progression. Further, it provides proof of concept that targeting Mst1r can modulate pancreatic cancer growth and the microenvironment. This study provides further rationale for targeting Mst1r as a therapeutic strategy.


Subject(s)
Carcinoma, Pancreatic Ductal/pathology , Epithelial Cells/pathology , Macrophages/pathology , Pancreatic Neoplasms/pathology , Receptor Protein-Tyrosine Kinases/metabolism , Animals , Carcinoma, Pancreatic Ductal/enzymology , Disease Progression , Female , Gene Knockdown Techniques , Humans , Intracellular Signaling Peptides and Proteins , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Pancreatic Neoplasms/enzymology , Proof of Concept Study , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Receptor Protein-Tyrosine Kinases/genetics , Signal Transduction , Tumor Microenvironment
19.
Cancer Cell ; 35(3): 504-518.e7, 2019 03 18.
Article in English | MEDLINE | ID: mdl-30827889

ABSTRACT

Ionizing radiation (IR) and chemotherapy are standard-of-care treatments for glioblastoma (GBM) patients and both result in DNA damage, however, the clinical efficacy is limited due to therapeutic resistance. We identified a mechanism of such resistance mediated by phosphorylation of PTEN on tyrosine 240 (pY240-PTEN) by FGFR2. pY240-PTEN is rapidly elevated and bound to chromatin through interaction with Ki-67 in response to IR treatment and facilitates the recruitment of RAD51 to promote DNA repair. Blocking Y240 phosphorylation confers radiation sensitivity to tumors and extends survival in GBM preclinical models. Y240F-Pten knockin mice showed radiation sensitivity. These results suggest that FGFR-mediated pY240-PTEN is a key mechanism of radiation resistance and is an actionable target for improving radiotherapy efficacy.


Subject(s)
Brain Neoplasms/therapy , Cell Nucleus/metabolism , Glioma/therapy , PTEN Phosphohydrolase/metabolism , Pyrimidines/administration & dosage , Radiation Tolerance/drug effects , Receptor, Fibroblast Growth Factor, Type 2/metabolism , Animals , Brain Neoplasms/metabolism , DNA Repair/drug effects , Female , Glioma/metabolism , Humans , Male , Mice , Phosphorylation/drug effects , Pyrimidines/pharmacology , Rad51 Recombinase/metabolism , Tyrosine/metabolism , Xenograft Model Antitumor Assays
20.
Evol Appl ; 12(2): 337-349, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30697344

ABSTRACT

Neisseria gonorrhoeae causes the sexually transmitted disease gonorrhea exclusively in humans and uses multiple strategies to infect, including acquisition of host sialic acids that cap and mask lipooligosaccharide termini, while restricting complement activation. We hypothesized that gonococci selectively target human anti-inflammatory sialic acid-recognizing Siglec receptors on innate immune cells to blunt host responses and that pro-inflammatory Siglecs and SIGLEC pseudogene polymorphisms represent host evolutionary adaptations to counteract this interaction. N. gonorrhoeae can indeed engage multiple human but not chimpanzee CD33rSiglecs expressed on innate immune cells and in the genitourinary tract--including Siglec-11 (inhibitory) and Siglec-16 (activating), which we detected for the first time on human cervical epithelium. Surprisingly, in addition to LOS sialic acid, we found that gonococcal porin (PorB) mediated binding to multiple Siglecs. PorB also bound preferentially to human Siglecs and not chimpanzee orthologs, modulating host immune reactions in a human-specific manner. Lastly, we studied the distribution of null SIGLEC polymorphisms in a Namibian cohort with a high prevalence of gonorrhea and found that uninfected women preferentially harbor functional SIGLEC16 alleles encoding an activating immune receptor. These results contribute to the understanding of the human specificity of N. gonorrhoeae and how it evolved to evade the human immune defense.

SELECTION OF CITATIONS
SEARCH DETAIL
...