Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 13(1): 6573, 2022 11 02.
Article in English | MEDLINE | ID: mdl-36323696

ABSTRACT

Active fluids have applications in micromixing, but little is known about the mixing kinematics of systems with spatiotemporally-varying activity. To investigate, UV-activated caged ATP is used to activate controlled regions of microtubule-kinesin active fluid and the mixing process is observed with fluorescent tracers and molecular dyes. At low Péclet numbers (diffusive transport), the active-inactive interface progresses toward the inactive area in a diffusion-like manner that is described by a simple model combining diffusion with Michaelis-Menten kinetics. At high Péclet numbers (convective transport), the active-inactive interface progresses in a superdiffusion-like manner that is qualitatively captured by an active-fluid hydrodynamic model coupled to ATP transport. Results show that active fluid mixing involves complex coupling between distribution of active stress and active transport of ATP and reduces mixing time for suspended components with decreased impact of initial component distribution. This work will inform application of active fluids to promote micromixing in microfluidic devices.


Subject(s)
Kinesins , Microtubules , Kinetics , Diffusion , Adenosine Triphosphate , Coloring Agents
2.
J Vis Exp ; (153)2019 11 26.
Article in English | MEDLINE | ID: mdl-31840659

ABSTRACT

We present a method for using temperature to tune the flow speeds of kinesin-driven, microtubule-based three-dimensional (3D) active fluids. This method allows for tuning the speeds in situ without the need to manufacture new samples to reach different desired speeds. Moreover, this method enables the dynamic control of speed. Cycling the temperature leads the fluids to flow fast and slow, periodically. This controllability is based on the Arrhenius characteristic of the kinesin-microtubule reaction, demonstrating a controlled mean flow speed range of 4-8 µm/s. The presented method will open the door to the design of microfluidic devices where the flow rates in the channel are locally tunable without the need for a valve.


Subject(s)
Microfluidic Analytical Techniques/methods , Microtubules/chemistry , Temperature , Equipment Design , Kinesins/chemistry , Lab-On-A-Chip Devices , Microfluidic Analytical Techniques/instrumentation
3.
Soft Matter ; 15(25): 5006-5016, 2019 Jun 26.
Article in English | MEDLINE | ID: mdl-31165127

ABSTRACT

Self-organization of kinesin-driven, microtubule-based 3D active fluids relies on the collective dynamics of single microtubules. However, the connection between macroscopic fluid flows and microscopic motion of microtubules remains unclear. In this work, the motion of single microtubules was characterized by means of 2D gliding assays and compared with the flows of 3D active fluids. While the scales of the two systems differ by ∼1000×, both were driven by processive, non-processive or an equal mixture of both molecular motor proteins. To search for the dynamic correlation between both systems, the motor activities were tuned by varying temperature and ATP concentration, and the changes in both systems were compared. Motor processivity played an important role in active fluid flows but only when the fluids were nearly motionless; otherwise, flows were dominated by hydrodynamic resistance controlled by sample size. Furthermore, while the motors' thermal reaction led active fluids to flow faster with increasing temperature, such temperature dependence could be reversed by introducing temperature-varying depletants, emphasizing the potential role of the depletant in designing an active fluid's temperature response. The temperature response of active fluids was nearly immediate (⪅10 s). Such a characteristic enables active fluids to be controlled with a temperature switch. Overall, this work not only clarifies the role of temperature in active fluid activity, but also sheds light on the underlying principles of the relationship between the collective dynamics of active fluids and the dynamics of their constituent single microtubules.

SELECTION OF CITATIONS
SEARCH DETAIL