Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
1.
bioRxiv ; 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38585980

ABSTRACT

Neural circuits are characterized by genetically and functionally diverse cell types. A mechanistic understanding of circuit function is predicated on linking the genetic and physiological properties of individual neurons. However, it remains highly challenging to map the functional properties of transcriptionally heterogeneous neuronal subtypes in mammalian cortical circuits in vivo. Here, we introduce a high-throughput two-photon nuclear phototagging (2P-NucTag) approach optimized for on-demand and indelible labeling of single neurons via a photoactivatable red fluorescent protein following in vivo functional characterization in behaving mice. We demonstrate the utility of this function-forward pipeline by selectively labeling and transcriptionally profiling previously inaccessible 'place' and 'silent' cells in the mouse hippocampus. Our results reveal unexpected differences in gene expression between these hippocampal pyramidal neurons with distinct spatial coding properties. Thus, 2P-NucTag opens a new way to uncover the molecular principles that govern the functional organization of neural circuits.

2.
bioRxiv ; 2023 Oct 29.
Article in English | MEDLINE | ID: mdl-37961359

ABSTRACT

High-density microelectrode arrays (MEAs) have opened new possibilities for systems neuroscience in human and non-human animals, but brain tissue motion relative to the array poses a challenge for downstream analyses, particularly in human recordings. We introduce DREDge (Decentralized Registration of Electrophysiology Data), a robust algorithm which is well suited for the registration of noisy, nonstationary extracellular electrophysiology recordings. In addition to estimating motion from spikes in the action potential (AP) frequency band, DREDge enables automated tracking of motion at high temporal resolution in the local field potential (LFP) frequency band. In human intraoperative recordings, which often feature fast (period <1s) motion, DREDge correction in the LFP band enabled reliable recovery of evoked potentials, and significantly reduced single-unit spike shape variability and spike sorting error. Applying DREDge to recordings made during deep probe insertions in nonhuman primates demonstrated the possibility of tracking probe motion of centimeters across several brain regions while simultaneously mapping single unit electrophysiological features. DREDge reliably delivered improved motion correction in acute mouse recordings, especially in those made with an recent ultra-high density probe. We also implemented a procedure for applying DREDge to recordings made across tens of days in chronic implantations in mice, reliably yielding stable motion tracking despite changes in neural activity across experimental sessions. Together, these advances enable automated, scalable registration of electrophysiological data across multiple species, probe types, and drift cases, providing a stable foundation for downstream scientific analyses of these rich datasets.

3.
bioRxiv ; 2023 Sep 22.
Article in English | MEDLINE | ID: mdl-37790422

ABSTRACT

Neural decoding and its applications to brain computer interfaces (BCI) are essential for understanding the association between neural activity and behavior. A prerequisite for many decoding approaches is spike sorting, the assignment of action potentials (spikes) to individual neurons. Current spike sorting algorithms, however, can be inaccurate and do not properly model uncertainty of spike assignments, therefore discarding information that could potentially improve decoding performance. Recent advances in high-density probes (e.g., Neuropixels) and computational methods now allow for extracting a rich set of spike features from unsorted data; these features can in turn be used to directly decode behavioral correlates. To this end, we propose a spike sorting-free decoding method that directly models the distribution of extracted spike features using a mixture of Gaussians (MoG) encoding the uncertainty of spike assignments, without aiming to solve the spike clustering problem explicitly. We allow the mixing proportion of the MoG to change over time in response to the behavior and develop variational inference methods to fit the resulting model and to perform decoding. We benchmark our method with an extensive suite of recordings from different animals and probe geometries, demonstrating that our proposed decoder can consistently outperform current methods based on thresholding (i.e. multi-unit activity) and spike sorting. Open source code is available at https://github.com/yzhang511/density_decoding.

4.
medRxiv ; 2023 Aug 24.
Article in English | MEDLINE | ID: mdl-37662256

ABSTRACT

Disease heterogeneity poses a significant challenge for precision diagnostics in both clinical and sub-clinical stages. Recent work leveraging artificial intelligence (AI) has offered promise to dissect this heterogeneity by identifying complex intermediate phenotypes - herein called dimensional neuroimaging endophenotypes (DNEs) - which subtype various neurologic and neuropsychiatric diseases. We investigate the presence of nine such DNEs derived from independent yet harmonized studies on Alzheimer's disease (AD1-2)1, autism spectrum disorder (ASD1-3)2, late-life depression (LLD1-2)3, and schizophrenia (SCZ1-2)4, in the general population of 39,178 participants in the UK Biobank study. Phenome-wide associations revealed prominent associations between the nine DNEs and phenotypes related to the brain and other human organ systems. This phenotypic landscape aligns with the SNP-phenotype genome-wide associations, revealing 31 genomic loci associated with the nine DNEs (Bonferroni corrected P-value < 5×10-8/9). The DNEs exhibited significant genetic correlations, colocalization, and causal relationships with multiple human organ systems and chronic diseases. A causal effect (odds ratio=1.25 [1.11, 1.40], P-value=8.72×1-4) was established from AD2, characterized by focal medial temporal lobe atrophy, to AD. The nine DNEs and their polygenic risk scores significantly improved the prediction accuracy for 14 systemic disease categories and mortality. These findings underscore the potential of the nine DNEs to identify individuals at a high risk of developing the four brain diseases during preclinical stages for precision diagnostics. All results are publicly available at: http://labs.loni.usc.edu/medicine/.

5.
Nat Protoc ; 18(10): 2927-2953, 2023 10.
Article in English | MEDLINE | ID: mdl-37697108

ABSTRACT

Neuropixels are silicon-based electrophysiology-recording probes with high channel count and recording-site density. These probes offer a turnkey platform for measuring neural activity with single-cell resolution and at a scale that is beyond the capabilities of current clinically approved devices. Our team demonstrated the first-in-human use of these probes during resection surgery for epilepsy or tumors and deep brain stimulation electrode placement in patients with Parkinson's disease. Here, we provide a better understanding of the capabilities and challenges of using Neuropixels as a research tool to study human neurophysiology, with the hope that this information may inform future efforts toward regulatory approval of Neuropixels probes as research devices. In perioperative procedures, the major concerns are the initial sterility of the device, maintaining a sterile field during surgery, having multiple referencing and grounding schemes available to de-noise recordings (if necessary), protecting the silicon probe from accidental contact before insertion and obtaining high-quality action potential and local field potential recordings. The research team ensures that the device is fully operational while coordinating with the surgical team to remove sources of electrical noise that could otherwise substantially affect the signals recorded by the sensitive hardware. Prior preparation using the equipment and training in human clinical research and working in operating rooms maximize effective communication within and between the teams, ensuring high recording quality and minimizing the time added to the surgery. The perioperative procedure requires ~4 h, and the entire protocol requires multiple weeks.


Subject(s)
Operating Rooms , Silicon , Humans , Electrodes , Neurophysiology , Action Potentials/physiology , Electrodes, Implanted
6.
Inf Process Med Imaging ; 13939: 332-343, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37476079

ABSTRACT

Atlases are crucial to imaging statistics as they enable the standardization of inter-subject and inter-population analyses. While existing atlas estimation methods based on fluid/elastic/diffusion registration yield high-quality results for the human brain, these deformation models do not extend to a variety of other challenging areas of neuroscience such as the anatomy of C. elegans worms and fruit flies. To this end, this work presents a general probabilistic deep network-based framework for atlas estimation and registration which can flexibly incorporate various deformation models and levels of keypoint supervision that can be applied to a wide class of model organisms. Of particular relevance, it also develops a deformable piecewise rigid atlas model which is regularized to preserve inter-observation distances between neighbors. These modeling considerations are shown to improve atlas construction and key-point alignment across a diversity of datasets with small sample sizes including neuron positions in C. elegans hermaphrodites, fluorescence microscopy of male C. elegans, and images of fruit fly wings. Code is accessible at https://github.com/amin-nejat/Deformable-Atlas.

7.
Article in English | MEDLINE | ID: mdl-37388234

ABSTRACT

High-density electrophysiology probes have opened new possibilities for systems neuroscience in human and non-human animals, but probe motion poses a challenge for downstream analyses, particularly in human recordings. We improve on the state of the art for tracking this motion with four major contributions. First, we extend previous decentralized methods to use multiband information, leveraging the local field potential (LFP) in addition to spikes. Second, we show that the LFP-based approach enables registration at sub-second temporal resolution. Third, we introduce an efficient online motion tracking algorithm, enabling the method to scale up to longer and higher-resolution recordings, and possibly facilitating real-time applications. Finally, we improve the robustness of the approach by introducing a structure-aware objective and simple methods for adaptive parameter selection. Together, these advances enable fully automated scalable registration of challenging datasets from human and mouse.

8.
Article in English | MEDLINE | ID: mdl-37388235

ABSTRACT

Multimodal microscopy experiments that image the same population of cells under different experimental conditions have become a widely used approach in systems and molecular neuroscience. The main obstacle is to align the different imaging modalities to obtain complementary information about the observed cell population (e.g., gene expression and calcium signal). Traditional image registration methods perform poorly when only a small subset of cells are present in both images, as is common in multimodal experiments. We cast multimodal microscopy alignment as a cell subset matching problem. To solve this non-convex problem, we introduce an efficient and globally optimal branch-and-bound algorithm to find subsets of point clouds that are in rotational alignment with each other. In addition, we use complementary information about cell shape and location to compute the matching likelihood of cell pairs in two imaging modalities to further prune the optimization search tree. Finally, we use the maximal set of cells in rigid rotational alignment to seed image deformation fields to obtain a final registration result. Our framework performs better than the state-of-the-art histology alignment approaches regarding matching quality and is faster than manual alignment, providing a viable solution to improve the throughput of multimodal microscopy experiments.

9.
Mol Psychiatry ; 28(5): 2008-2017, 2023 05.
Article in English | MEDLINE | ID: mdl-37147389

ABSTRACT

Using machine learning, we recently decomposed the neuroanatomical heterogeneity of established schizophrenia to discover two volumetric subgroups-a 'lower brain volume' subgroup (SG1) and an 'higher striatal volume' subgroup (SG2) with otherwise normal brain structure. In this study, we investigated whether the MRI signatures of these subgroups were also already present at the time of the first-episode of psychosis (FEP) and whether they were related to clinical presentation and clinical remission over 1-, 3-, and 5-years. We included 572 FEP and 424 healthy controls (HC) from 4 sites (Sao Paulo, Santander, London, Melbourne) of the PHENOM consortium. Our prior MRI subgrouping models (671 participants; USA, Germany, and China) were applied to both FEP and HC. Participants were assigned into 1 of 4 categories: subgroup 1 (SG1), subgroup 2 (SG2), no subgroup membership ('None'), and mixed SG1 + SG2 subgroups ('Mixed'). Voxel-wise analyses characterized SG1 and SG2 subgroups. Supervised machine learning analyses characterized baseline and remission signatures related to SG1 and SG2 membership. The two dominant patterns of 'lower brain volume' in SG1 and 'higher striatal volume' (with otherwise normal neuromorphology) in SG2 were identified already at the first episode of psychosis. SG1 had a significantly higher proportion of FEP (32%) vs. HC (19%) than SG2 (FEP, 21%; HC, 23%). Clinical multivariate signatures separated the SG1 and SG2 subgroups (balanced accuracy = 64%; p < 0.0001), with SG2 showing higher education but also greater positive psychosis symptoms at first presentation, and an association with symptom remission at 1-year, 5-year, and when timepoints were combined. Neuromorphological subtypes of schizophrenia are already evident at illness onset, separated by distinct clinical presentations, and differentially associated with subsequent remission. These results suggest that the subgroups may be underlying risk phenotypes that could be targeted in future treatment trials and are critical to consider when interpreting neuroimaging literature.


Subject(s)
Psychotic Disorders , Schizophrenia , Humans , Brazil , Brain/diagnostic imaging , Magnetic Resonance Imaging
10.
JAMA Psychiatry ; 80(5): 498-507, 2023 05 01.
Article in English | MEDLINE | ID: mdl-37017948

ABSTRACT

Importance: Autism spectrum disorder (ASD) is associated with significant clinical, neuroanatomical, and genetic heterogeneity that limits precision diagnostics and treatment. Objective: To assess distinct neuroanatomical dimensions of ASD using novel semisupervised machine learning methods and to test whether the dimensions can serve as endophenotypes also in non-ASD populations. Design, Setting, and Participants: This cross-sectional study used imaging data from the publicly available Autism Brain Imaging Data Exchange (ABIDE) repositories as the discovery cohort. The ABIDE sample included individuals diagnosed with ASD aged between 16 and 64 years and age- and sex-match typically developing individuals. Validation cohorts included individuals with schizophrenia from the Psychosis Heterogeneity Evaluated via Dimensional Neuroimaging (PHENOM) consortium and individuals from the UK Biobank to represent the general population. The multisite discovery cohort included 16 internationally distributed imaging sites. Analyses were performed between March 2021 and March 2022. Main Outcomes and Measures: The trained semisupervised heterogeneity through discriminative analysis models were tested for reproducibility using extensive cross-validations. It was then applied to individuals from the PHENOM and the UK Biobank. It was hypothesized that neuroanatomical dimensions of ASD would display distinct clinical and genetic profiles and would be prominent also in non-ASD populations. Results: Heterogeneity through discriminative analysis models trained on T1-weighted brain magnetic resonance images of 307 individuals with ASD (mean [SD] age, 25.4 [9.8] years; 273 [88.9%] male) and 362 typically developing control individuals (mean [SD] age, 25.8 [8.9] years; 309 [85.4%] male) revealed that a 3-dimensional scheme was optimal to capture the ASD neuroanatomy. The first dimension (A1: aginglike) was associated with smaller brain volume, lower cognitive function, and aging-related genetic variants (FOXO3; Z = 4.65; P = 1.62 × 10-6). The second dimension (A2: schizophrenialike) was characterized by enlarged subcortical volumes, antipsychotic medication use (Cohen d = 0.65; false discovery rate-adjusted P = .048), partially overlapping genetic, neuroanatomical characteristics to schizophrenia (n = 307), and significant genetic heritability estimates in the general population (n = 14 786; mean [SD] h2, 0.71 [0.04]; P < 1 × 10-4). The third dimension (A3: typical ASD) was distinguished by enlarged cortical volumes, high nonverbal cognitive performance, and biological pathways implicating brain development and abnormal apoptosis (mean [SD] ß, 0.83 [0.02]; P = 4.22 × 10-6). Conclusions and Relevance: This cross-sectional study discovered 3-dimensional endophenotypic representation that may elucidate the heterogeneous neurobiological underpinnings of ASD to support precision diagnostics. The significant correspondence between A2 and schizophrenia indicates a possibility of identifying common biological mechanisms across the 2 mental health diagnoses.


Subject(s)
Autism Spectrum Disorder , Schizophrenia , Humans , Male , Adolescent , Young Adult , Adult , Middle Aged , Female , Autism Spectrum Disorder/diagnostic imaging , Autism Spectrum Disorder/genetics , Autism Spectrum Disorder/pathology , Schizophrenia/diagnostic imaging , Schizophrenia/genetics , Schizophrenia/pathology , Endophenotypes , Cross-Sectional Studies , Reproducibility of Results , Neuroanatomy , Brain , Magnetic Resonance Imaging/methods
11.
Am J Psychiatry ; 179(9): 650-660, 2022 09.
Article in English | MEDLINE | ID: mdl-35410495

ABSTRACT

OBJECTIVE: The prevalence and significance of schizophrenia-related phenotypes at the population level is debated in the literature. Here, the authors assessed whether two recently reported neuroanatomical signatures of schizophrenia-signature 1, with widespread reduction of gray matter volume, and signature 2, with increased striatal volume-could be replicated in an independent schizophrenia sample, and investigated whether expression of these signatures can be detected at the population level and how they relate to cognition, psychosis spectrum symptoms, and schizophrenia genetic risk. METHODS: This cross-sectional study used an independent schizophrenia-control sample (N=347; ages 16-57 years) for replication of imaging signatures, and then examined two independent population-level data sets: typically developing youths and youths with psychosis spectrum symptoms in the Philadelphia Neurodevelopmental Cohort (N=359; ages 16-23 years) and adults in the UK Biobank study (N=836; ages 44-50 years). The authors quantified signature expression using support-vector machine learning and compared cognition, psychopathology, and polygenic risk between signatures. RESULTS: Two neuroanatomical signatures of schizophrenia were replicated. Signature 1 but not signature 2 was significantly more common in youths with psychosis spectrum symptoms than in typically developing youths, whereas signature 2 frequency was similar in the two groups. In both youths and adults, signature 1 was associated with worse cognitive performance than signature 2. Compared with adults with neither signature, adults expressing signature 1 had elevated schizophrenia polygenic risk scores, but this was not seen for signature 2. CONCLUSIONS: The authors successfully replicated two neuroanatomical signatures of schizophrenia and describe their prevalence in population-based samples of youths and adults. They further demonstrated distinct relationships of these signatures with psychosis symptoms, cognition, and genetic risk, potentially reflecting underlying neurobiological vulnerability.


Subject(s)
Psychotic Disorders , Schizophrenia , Cognition , Cross-Sectional Studies , Gray Matter/pathology , Humans , Psychotic Disorders/diagnosis , Psychotic Disorders/epidemiology , Psychotic Disorders/genetics , Schizophrenia/epidemiology , Schizophrenia/genetics , Schizophrenia/pathology
12.
JAMA Psychiatry ; 79(5): 464-474, 2022 05 01.
Article in English | MEDLINE | ID: mdl-35262657

ABSTRACT

Importance: Late-life depression (LLD) is characterized by considerable heterogeneity in clinical manifestation. Unraveling such heterogeneity might aid in elucidating etiological mechanisms and support precision and individualized medicine. Objective: To cross-sectionally and longitudinally delineate disease-related heterogeneity in LLD associated with neuroanatomy, cognitive functioning, clinical symptoms, and genetic profiles. Design, Setting, and Participants: The Imaging-Based Coordinate System for Aging and Neurodegenerative Diseases (iSTAGING) study is an international multicenter consortium investigating brain aging in pooled and harmonized data from 13 studies with more than 35 000 participants, including a subset of individuals with major depressive disorder. Multimodal data from a multicenter sample (N = 996), including neuroimaging, neurocognitive assessments, and genetics, were analyzed in this study. A semisupervised clustering method (heterogeneity through discriminative analysis) was applied to regional gray matter (GM) brain volumes to derive dimensional representations. Data were collected from July 2017 to July 2020 and analyzed from July 2020 to December 2021. Main Outcomes and Measures: Two dimensions were identified to delineate LLD-associated heterogeneity in voxelwise GM maps, white matter (WM) fractional anisotropy, neurocognitive functioning, clinical phenotype, and genetics. Results: A total of 501 participants with LLD (mean [SD] age, 67.39 [5.56] years; 332 women) and 495 healthy control individuals (mean [SD] age, 66.53 [5.16] years; 333 women) were included. Patients in dimension 1 demonstrated relatively preserved brain anatomy without WM disruptions relative to healthy control individuals. In contrast, patients in dimension 2 showed widespread brain atrophy and WM integrity disruptions, along with cognitive impairment and higher depression severity. Moreover, 1 de novo independent genetic variant (rs13120336; chromosome: 4, 186387714; minor allele, G) was significantly associated with dimension 1 (odds ratio, 2.35; SE, 0.15; P = 3.14 ×108) but not with dimension 2. The 2 dimensions demonstrated significant single-nucleotide variant-based heritability of 18% to 27% within the general population (N = 12 518 in UK Biobank). In a subset of individuals having longitudinal measurements, those in dimension 2 experienced a more rapid longitudinal change in GM and brain age (Cohen f2 = 0.03; P = .02) and were more likely to progress to Alzheimer disease (Cohen f2 = 0.03; P = .03) compared with those in dimension 1 (N = 1431 participants and 7224 scans from the Alzheimer's Disease Neuroimaging Initiative [ADNI], Baltimore Longitudinal Study of Aging [BLSA], and Biomarkers for Older Controls at Risk for Dementia [BIOCARD] data sets). Conclusions and Relevance: This study characterized heterogeneity in LLD into 2 dimensions with distinct neuroanatomical, cognitive, clinical, and genetic profiles. This dimensional approach provides a potential mechanism for investigating the heterogeneity of LLD and the relevance of the latent dimensions to possible disease mechanisms, clinical outcomes, and responses to interventions.


Subject(s)
Alzheimer Disease , Depressive Disorder, Major , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/genetics , Brain/diagnostic imaging , Cognition , Depression , Depressive Disorder, Major/diagnostic imaging , Depressive Disorder, Major/genetics , Female , Humans , Longitudinal Studies , Magnetic Resonance Imaging/methods , Male , Neuroimaging
13.
Med Image Anal ; 75: 102304, 2022 01.
Article in English | MEDLINE | ID: mdl-34818611

ABSTRACT

Disease heterogeneity is a significant obstacle to understanding pathological processes and delivering precision diagnostics and treatment. Clustering methods have gained popularity for stratifying patients into subpopulations (i.e., subtypes) of brain diseases using imaging data. However, unsupervised clustering approaches are often confounded by anatomical and functional variations not related to a disease or pathology of interest. Semi-supervised clustering techniques have been proposed to overcome this and, therefore, capture disease-specific patterns more effectively. An additional limitation of both unsupervised and semi-supervised conventional machine learning methods is that they typically model, learn and infer from data using a basis of feature sets pre-defined at a fixed anatomical or functional scale (e.g., atlas-based regions of interest). Herein we propose a novel method, "Multi-scAle heteroGeneity analysIs and Clustering" (MAGIC), to depict the multi-scale presentation of disease heterogeneity, which builds on a previously proposed semi-supervised clustering method, HYDRA. It derives multi-scale and clinically interpretable feature representations and exploits a double-cyclic optimization procedure to effectively drive identification of inter-scale-consistent disease subtypes. More importantly, to understand the conditions under which the clustering model can estimate true heterogeneity related to diseases, we conducted extensive and systematic semi-simulated experiments to evaluate the proposed method on a sizeable healthy control sample from the UK Biobank (N = 4403). We then applied MAGIC to imaging data from Alzheimer's disease (ADNI, N = 1728) and schizophrenia (PHENOM, N = 1166) patients to demonstrate its potential and challenges in dissecting the neuroanatomical heterogeneity of common brain diseases. Taken together, we aim to provide guidance regarding when such analyses can succeed or should be taken with caution. The code of the proposed method is publicly available at https://github.com/anbai106/MAGIC.


Subject(s)
Alzheimer Disease , Brain , Alzheimer Disease/diagnostic imaging , Brain/diagnostic imaging , Cluster Analysis , Humans , Supervised Machine Learning
14.
Development ; 148(18)2021 09 15.
Article in English | MEDLINE | ID: mdl-34415309

ABSTRACT

Sex differences in the brain are prevalent throughout the animal kingdom and particularly well appreciated in the nematode Caenorhabditis elegans, where male animals contain a little-studied set of 93 male-specific neurons. To make these neurons amenable for future study, we describe here how a multicolor reporter transgene, NeuroPAL, is capable of visualizing the distinct identities of all male-specific neurons. We used NeuroPAL to visualize and characterize a number of features of the male-specific nervous system. We provide several proofs of concept for using NeuroPAL to identify the sites of expression of gfp-tagged reporter genes and for cellular fate analysis by analyzing the effect of removal of several developmental patterning genes on neuronal identity acquisition. We use NeuroPAL and its intrinsic cohort of more than 40 distinct differentiation markers to show that, even though male-specific neurons are generated throughout all four larval stages, they execute their terminal differentiation program in a coordinated manner in the fourth larval stage. This coordinated wave of differentiation, which we call 'just-in-time' differentiation, couples neuronal maturation programs with the appearance of sexual organs.


Subject(s)
Caenorhabditis elegans/physiology , Cell Differentiation/physiology , Nervous System/physiopathology , Animals , Brain/physiology , Caenorhabditis elegans/genetics , Cell Differentiation/genetics , Gene Expression Regulation, Developmental/genetics , Genes, Reporter/genetics , Male , Neurogenesis/genetics , Neurons/physiology , Transgenes/genetics
15.
Cell ; 184(16): 4329-4347.e23, 2021 08 05.
Article in English | MEDLINE | ID: mdl-34237253

ABSTRACT

We have produced gene expression profiles of all 302 neurons of the C. elegans nervous system that match the single-cell resolution of its anatomy and wiring diagram. Our results suggest that individual neuron classes can be solely identified by combinatorial expression of specific gene families. For example, each neuron class expresses distinct codes of ∼23 neuropeptide genes and ∼36 neuropeptide receptors, delineating a complex and expansive "wireless" signaling network. To demonstrate the utility of this comprehensive gene expression catalog, we used computational approaches to (1) identify cis-regulatory elements for neuron-specific gene expression and (2) reveal adhesion proteins with potential roles in process placement and synaptic specificity. Our expression data are available at https://cengen.org and can be interrogated at the web application CengenApp. We expect that this neuron-specific directory of gene expression will spur investigations of underlying mechanisms that define anatomy, connectivity, and function throughout the C. elegans nervous system.


Subject(s)
Caenorhabditis elegans/metabolism , Nervous System/metabolism , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Fluorescent Dyes/metabolism , Gene Expression Regulation, Developmental , Genes, Reporter , Larva/metabolism , Neurons/metabolism , Neuropeptides/genetics , Neuropeptides/metabolism , Nucleotide Motifs/genetics , RNA-Seq , Regulatory Sequences, Nucleic Acid/genetics , Signal Transduction/genetics , Transcription Factors/metabolism , Transcription, Genetic
16.
Elife ; 102021 06 24.
Article in English | MEDLINE | ID: mdl-34165428

ABSTRACT

Many neuronal identity regulators are expressed in distinct populations of cells in the nervous system, but their function is often analyzed only in specific isolated cellular contexts, thereby potentially leaving overarching themes in gene function undiscovered. We show here that the Caenorhabditis elegans Prop1-like homeobox gene unc-42 is expressed in 15 distinct sensory, inter- and motor neuron classes throughout the entire C. elegans nervous system. Strikingly, all 15 neuron classes expressing unc-42 are synaptically interconnected, prompting us to investigate whether unc-42 controls the functional properties of this circuit and perhaps also the assembly of these neurons into functional circuitry. We found that unc-42 defines the routes of communication between these interconnected neurons by controlling the expression of neurotransmitter pathway genes, neurotransmitter receptors, neuropeptides, and neuropeptide receptors. Anatomical analysis of unc-42 mutant animals reveals defects in axon pathfinding and synaptic connectivity, paralleled by expression defects of molecules involved in axon pathfinding, cell-cell recognition, and synaptic connectivity. We conclude that unc-42 establishes functional circuitry by acting as a terminal selector of functionally connected neuron types. We identify a number of additional transcription factors that are also expressed in synaptically connected neurons and propose that terminal selectors may also function as 'circuit organizer transcription factors' to control the assembly of functional circuitry throughout the nervous system. We hypothesize that such organizational properties of transcription factors may be reflective of not only ontogenetic, but perhaps also phylogenetic trajectories of neuronal circuit establishment.


Subject(s)
Body Patterning/genetics , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans/embryology , Homeodomain Proteins/genetics , Interneurons/physiology , Motor Neurons/physiology , Sensory Receptor Cells/physiology , Animals , Caenorhabditis elegans Proteins/metabolism , Embryo, Nonmammalian/embryology , Homeodomain Proteins/metabolism , Synapses/metabolism
17.
Article in English | MEDLINE | ID: mdl-35274110

ABSTRACT

Spatial transcriptomics techniques such as STARmap [15] enable the subcellular detection of RNA transcripts within complex tissue sections. The data from these techniques are impacted by optical microscopy limitations, such as shading or vignetting effects from uneven illumination during image capture. Downstream analysis of these sparse spatially resolved transcripts is dependent upon the correction of these artefacts. This paper introduces a novel non-parametric vignetting correction tool for spatial transcriptomic images, which estimates the illumination field and background using an efficient iterative sliced histogram normalization routine. We show that our method outperforms the state-of-the-art shading correction techniques both in terms of illumination and background field estimation and requires fewer input images to perform the estimation adequately. We further demonstrate an important downstream application of our technique, showing that spatial transcriptomic volumes corrected by our method yield a higher and more uniform gene expression spot-calling in the rodent hippocampus. Python code and a demo file to reproduce our results are provided in the supplementary material and at this github page: https://github.com/BoveyRao/Non-parametric-vc-for-sparse-st.

18.
Circ Res ; 128(1): 92-114, 2021 01 08.
Article in English | MEDLINE | ID: mdl-33092464

ABSTRACT

RATIONALE: Ca2+-induced Ca2+ release (CICR) in normal hearts requires close approximation of L-type calcium channels (LTCCs) within the transverse tubules (T-tubules) and RyR (ryanodine receptors) within the junctional sarcoplasmic reticulum. CICR is disrupted in cardiac hypertrophy and heart failure, which is associated with loss of T-tubules and disruption of cardiac dyads. In these conditions, LTCCs are redistributed from the T-tubules to disrupt CICR. The molecular mechanism responsible for LTCCs recruitment to and from the T-tubules is not well known. JPH (junctophilin) 2 enables close association between T-tubules and the junctional sarcoplasmic reticulum to ensure efficient CICR. JPH2 has a so-called joining region that is located near domains that interact with T-tubular plasma membrane, where LTCCs are housed. The idea that this joining region directly interacts with LTCCs and contributes to LTCC recruitment to T-tubules is unknown. OBJECTIVE: To determine if the joining region in JPH2 recruits LTCCs to T-tubules through direct molecular interaction in cardiomyocytes to enable efficient CICR. METHODS AND RESULTS: Modified abundance of JPH2 and redistribution of LTCC were studied in left ventricular hypertrophy in vivo and in cultured adult feline and rat ventricular myocytes. Protein-protein interaction studies showed that the joining region in JPH2 interacts with LTCC-α1C subunit and causes LTCCs distribution to the dyads, where they colocalize with RyRs. A JPH2 with induced mutations in the joining region (mutPG1JPH2) caused T-tubule remodeling and dyad loss, showing that an interaction between LTCC and JPH2 is crucial for T-tubule stabilization. mutPG1JPH2 caused asynchronous Ca2+-release with impaired excitation-contraction coupling after ß-adrenergic stimulation. The disturbed Ca2+ regulation in mutPG1JPH2 overexpressing myocytes caused calcium/calmodulin-dependent kinase II activation and altered myocyte bioenergetics. CONCLUSIONS: The interaction between LTCC and the joining region in JPH2 facilitates dyad assembly and maintains normal CICR in cardiomyocytes.


Subject(s)
Calcium Channels, L-Type/metabolism , Calcium Signaling , Calcium/metabolism , Hypertrophy, Left Ventricular/metabolism , Membrane Proteins/metabolism , Muscle Proteins/metabolism , Myocytes, Cardiac/metabolism , Animals , Calcium Channels, L-Type/genetics , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Cats , Cells, Cultured , Disease Models, Animal , Excitation Contraction Coupling , Humans , Hypertrophy, Left Ventricular/pathology , Hypertrophy, Left Ventricular/physiopathology , Kinetics , Male , Membrane Proteins/genetics , Mitochondria, Heart/metabolism , Mitochondria, Heart/pathology , Muscle Proteins/genetics , Mutation , Myocytes, Cardiac/pathology , Organelle Biogenesis , Protein Binding , Protein Interaction Domains and Motifs , Rats, Sprague-Dawley , Ryanodine Receptor Calcium Release Channel
19.
Neuropsychopharmacology ; 46(4): 783-790, 2021 03.
Article in English | MEDLINE | ID: mdl-33007777

ABSTRACT

Depression is a common psychiatric illness that often begins in youth, and is sometimes associated with cognitive deficits. However, there is significant variability in cognitive dysfunction, likely reflecting biological heterogeneity. We sought to identify neurocognitive subtypes and their neurofunctional signatures in a large cross-sectional sample of depressed youth. Participants were drawn from the Philadelphia Neurodevelopmental Cohort, including 712 youth with a lifetime history of a major depressive episode and 712 typically developing (TD) youth matched on age and sex. A subset (MDD n = 368, TD n = 200) also completed neuroimaging. Cognition was assessed with the Penn Computerized Neurocognitive Battery. A recently developed semi-supervised machine learning algorithm was used to delineate neurocognitive subtypes. Subtypes were evaluated for differences in both clinical psychopathology and brain activation during an n-back working memory fMRI task. We identified three neurocognitive subtypes in the depressed group. Subtype 1 was high-performing (high accuracy, moderate speed), Subtype 2 was cognitively impaired (low accuracy, slow speed), and Subtype 3 was impulsive (low accuracy, fast speed). While subtypes did not differ in clinical psychopathology, they diverged in their activation profiles in regions critical for executive function, which mirrored differences in cognition. Taken together, these data suggest disparate mechanisms of cognitive vulnerability and resilience in depressed youth, which may inform the identification of biomarkers for prognosis and treatment response.


Subject(s)
Depressive Disorder, Major , Adolescent , Cognition , Cross-Sectional Studies , Depressive Disorder, Major/diagnostic imaging , Executive Function , Humans , Neuropsychological Tests
20.
Cell ; 184(1): 272-288.e11, 2021 01 07.
Article in English | MEDLINE | ID: mdl-33378642

ABSTRACT

Comprehensively resolving neuronal identities in whole-brain images is a major challenge. We achieve this in C. elegans by engineering a multicolor transgene called NeuroPAL (a neuronal polychromatic atlas of landmarks). NeuroPAL worms share a stereotypical multicolor fluorescence map for the entire hermaphrodite nervous system that resolves all neuronal identities. Neurons labeled with NeuroPAL do not exhibit fluorescence in the green, cyan, or yellow emission channels, allowing the transgene to be used with numerous reporters of gene expression or neuronal dynamics. We showcase three applications that leverage NeuroPAL for nervous-system-wide neuronal identification. First, we determine the brainwide expression patterns of all metabotropic receptors for acetylcholine, GABA, and glutamate, completing a map of this communication network. Second, we uncover changes in cell fate caused by transcription factor mutations. Third, we record brainwide activity in response to attractive and repulsive chemosensory cues, characterizing multimodal coding for these stimuli.


Subject(s)
Atlases as Topic , Brain Mapping , Brain/physiology , Caenorhabditis elegans/physiology , Neurons/physiology , Software , Algorithms , Anatomic Landmarks , Animals , Cell Body/physiology , Cell Lineage , Drosophila/physiology , Mutation/genetics , Nerve Net/physiology , Phenotype , Receptors, Metabotropic Glutamate/metabolism , Receptors, Neurotransmitter/metabolism , Smell/physiology , Taste/physiology , Transcription Factors/metabolism , Transgenes
SELECTION OF CITATIONS
SEARCH DETAIL
...