ABSTRACT
Elicitation of broad humoral immune responses is a critical factor in the development of effective HIV vaccines. In an effort to develop low-cost candidate vaccines based on multiepitopic recombinant proteins, this study has been undertaken to assess and characterize the immunogenic properties of a lettuce-derived C4(V3)6 multiepitopic protein. This protein consists of V3 loops corresponding to five different HIV isolates, including MN, IIIB, RF, CC, and RU. In this study, both Escherichia coli and lettuce-derived C4(V3)6 have elicited local and systemic immune responses when orally administered to BALB/c mice. More importantly, lettuce-derived C4(V3)6 has shown a higher immunogenic potential than that of E. coli-derived C4(V3)6. Moreover, when reactivity of sera from mice immunized with C4(V3)6 are compared with those elicited by a chimeric protein carrying a single V3 sequence, broader responses have been observed. The lettuce-derived C4(V3)6 has elicited antibodies with positive reactivity against V3 loops from isolates MN, RF, and CC. In addition, splenocyte proliferation assays indicate that significant T-helper responses are induced by the C4(V3)6 immunogen. Taken together, these findings account for the observed elicitation of broader humoral responses by the C4(V3)6 multiepitopic protein. Moreover, they provide further validation for the production of multiepitopic vaccines in plant cells as this serves not only as a low-cost expression system, but also as an effective delivery vehicle for orally administered immunogens.
Subject(s)
AIDS Vaccines/biosynthesis , Human Immunodeficiency Virus Proteins/biosynthesis , Human Immunodeficiency Virus Proteins/immunology , Lactuca/metabolism , Animals , Escherichia coli , Female , Immunogenetic Phenomena , Mice , Mice, Inbred BALB C , Recombinant Proteins/biosynthesis , Vaccines, Synthetic/biosynthesisABSTRACT
Although the human immunodeficiency virus (HIV) causes one of the most important infectious diseases worldwide, attempts to develop an effective vaccine remain elusive. Designing recombinant proteins capable of eliciting significant and protective mammalian immune responses remain a priority. Moreover, large-scale production of proteins of interest at affordable cost remains a challenge for modern biotechnology. In this study, a synthetic gene encoding a C4V3 recombinant protein, known to induce systemic and mucosal immune responses in mammalian systems, has been introduced into tobacco chloroplasts to yield high levels of expression. Integration of the transgene into the tobacco plastome has been verified by Southern blot hybridization. The recombinant C4V3 protein is also detected in tobacco chloroplasts by confocal microscopy. Reactivity of the heterologous protein with both an anti-C4V3 rabbit serum as well as sera from HIV positive patients have been assayed using Western blots. When administered by the oral route in a four-weekly dose immunization scheme, the plant-derived C4V3 has elicited both systemic and mucosal antibody responses in BALB/c mice, as well as CD4+ T cell proliferation responses. These findings support the viability of using plant chloroplasts as biofactories for HIV candidate vaccines, and could serve as important vehicles for the development of a plant-based candidate vaccine against HIV.
Subject(s)
Anti-HIV Agents/immunology , Chloroplasts/genetics , HIV Envelope Protein gp120/immunology , Peptide Fragments/immunology , Peptides/administration & dosage , Peptides/immunology , Vaccines, Synthetic/administration & dosage , Administration, Oral , Animals , Anti-HIV Agents/administration & dosage , Chloroplasts/immunology , Female , HIV Envelope Protein gp120/genetics , HIV Seropositivity , Humans , Immunity, Mucosal/immunology , Immunization , Mice , Mice, Inbred BALB C , Peptide Fragments/genetics , Peptides/genetics , Plants, Genetically Modified , Rabbits , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Recombinant Proteins/metabolism , Recombinant Proteins/pharmacology , Nicotiana/geneticsABSTRACT
The development of 2D graph-theoretic representations for DNA sequences was very important for qualitative and quantitative comparison of sequences. Calculation of numeric features for these representations is useful for DNA-QSAR studies. Most of all graph-theoretic representations identify each one of the four bases with a unitary walk in one axe direction in the 2D space. In the case of proteins, twenty amino acids instead of four bases have to be considered. This fact has limited the introduction of useful 2D Cartesian representations and the corresponding sequences descriptors to encode protein sequence information. In this study, we overcome this problem grouping amino acids into four groups: acid, basic, polar and non-polar amino acids. The identification of each group with one of the four axis directions determines a novel 2D representation and numeric descriptors for proteins sequences. Afterwards, a Markov model has been used to calculate new numeric descriptors of the protein sequence. These descriptors are called herein the sequence 2D coupling numbers (zeta(k)). In this work, we calculated the zeta(k) values for 108 sequences of different polygalacturonases (PGs) and for 100 sequences of other proteins. A Linear Discriminant Analysis model derived here (PG=5.36.zeta1-3.98.zeta3-42.21) successfully discriminates between PGs and other proteins. The model correctly classified 100% of a subset of 81 PGs and 75 non-PG proteins sequences used to train the model. The model also correctly classified 51 out of 52 (98.07%) of proteins sequences used as external validation series. The uses of different group of amino acids and/or axes orientation give different results, so it is suggested to be explored for other databases. Finally, to illustrates the use of the model we report the isolation and prediction of the PG action for a novel sequence (AY908988) isolated by our group from Psidium guajava L. This prediction coincides very well with sequence alignment results found by the BLAST methodology. These findings illustrate the possibilities of the sequence descriptors derived for this novel 2D sequence representation in proteins sequence QSAR studies.