Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
Philos Trans R Soc Lond B Biol Sci ; 378(1884): 20220143, 2023 08 28.
Article in English | MEDLINE | ID: mdl-37427466

ABSTRACT

The evolution of nest site use and nest architecture in the non-avian ancestors of birds remains poorly understood because nest structures do not preserve well as fossils. Nevertheless, the evidence suggests that the earliest dinosaurs probably buried eggs below ground and covered them with soil so that heat from the substrate fuelled embryo development, while some later dinosaurs laid partially exposed clutches where adults incubated them and protected them from predators and parasites. The nests of euornithine birds-the precursors to modern birds-were probably partially open and the neornithine birds-or modern birds-were probably the first to build fully exposed nests. The shift towards smaller, open cup nests has been accompanied by shifts in reproductive traits, with female birds having one functioning ovary in contrast to the two ovaries of crocodilians and many non-avian dinosaurs. The evolutionary trend among extant birds and their ancestors has been toward the evolution of greater cognitive abilities to construct in a wider diversity of sites and providing more care for significantly fewer, increasingly altricial, offspring. The highly derived passerines reflect this pattern with many species building small, architecturally complex nests in open sites and investing significant care into altricial young. This article is part of the theme issue 'The evolutionary ecology of nests: a cross-taxon approach'.


Subject(s)
Dinosaurs , Parasites , Animals , Female , Biological Evolution , Nesting Behavior , Ecology , Reproduction
2.
Philos Trans R Soc Lond B Biol Sci ; 378(1884): 20220144, 2023 08 28.
Article in English | MEDLINE | ID: mdl-37427474

ABSTRACT

For most dinosaurs, clutches consisted of a single layer of spherical to sub-spherical, highly porous eggs that were probably fully buried. Both eggs and clutch form change drastically with pennaraptoran theropods, the clade that includes birds. Here, far less porous, more elongate eggs are arranged with additional complexity, and only partially buried. While partial egg burial seems to be effective for an extremely small group of modern birds, the behaviour's overall rarity complicates our understanding of Mesozoic analogies. Recent experimental examination of pennaraptoran nesting thermodynamics suggests that partial egg burial, combined with contact incubation, may be more efficacious than has been presumed. We propose that nest guarding behaviour by endothermic archosaurs may have led to an indirect form of contact incubation using metabolic energy to affect temperature change in a buried clutch through a barrier of sediment, which in turn may have selected for shallower clutch burial to increasingly benefit from adult-generated energy until partial egg exposure. Once partially exposed, continued selection pressure may have aided a transition to fully subaerial eggs. This hypothesis connects the presence of partially buried dinosaurian clutches with the transition from basal, crocodile-like nesting (buried clutches guarded by adults) to the dominant avian habit of contact incubating fully exposed eggs. This article is part of the theme issue 'The evolutionary ecology of nests: a cross-taxon approach'.


Subject(s)
Dinosaurs , Animals , Nesting Behavior , Biological Evolution , Birds , Ecology , Eggs
3.
Science ; 379(6634): 811-814, 2023 02 24.
Article in English | MEDLINE | ID: mdl-36821658

ABSTRACT

In amniotes, the predominant developmental strategy underlying body size evolution is thought to be adjustments to the rate of growth rather than its duration. However, most theoretical and experimental studies supporting this axiom focus on pairwise comparisons and/or lack an explicit phylogenetic framework. We present the first large-scale phylogenetic comparative analysis examining developmental strategies underlying the evolution of body size, focusing on non-avialan theropod dinosaurs. We reconstruct ancestral states of growth rate and body mass in a taxonomically rich dataset, finding that contrary to expectations, changes in the rate and duration of growth played nearly equal roles in the evolution of the vast body size disparity present in non-avialan theropods-and perhaps that of amniotes in general.


Subject(s)
Biological Evolution , Body Size , Dinosaurs , Animals , Dinosaurs/anatomy & histology , Dinosaurs/classification , Dinosaurs/growth & development , Fossils , Phylogeny , Datasets as Topic
4.
Elife ; 122023 01 31.
Article in English | MEDLINE | ID: mdl-36719067

ABSTRACT

The avian palaeognath phylogeny has been recently revised significantly due to the advancement of genome-wide comparative analyses and provides the opportunity to trace the evolution of the microstructure and crystallography of modern dinosaur eggshells. Here, eggshells of all major clades of Palaeognathae (including extinct taxa) and selected eggshells of Neognathae and non-avian dinosaurs are analysed with electron backscatter diffraction. Our results show the detailed microstructures and crystallographies of (previously) loosely categorized ostrich-, rhea-, and tinamou-style morphotypes of palaeognath eggshells. All rhea-style eggshell appears homologous, while respective ostrich-style and tinamou-style morphotypes are best interpreted as homoplastic morphologies (independently acquired). Ancestral state reconstruction and parsimony analysis additionally show that rhea-style eggshell represents the ancestral state of palaeognath eggshells both in microstructure and crystallography. The ornithological and palaeontological implications of the current study are not only helpful for the understanding of evolution of modern and extinct dinosaur eggshells, but also aid other disciplines where palaeognath eggshells provide useful archive for comparative contrasts (e.g. palaeoenvironmental reconstructions, geochronology, and zooarchaeology).


About 50 species of birds on the planet today do not belong to the same group as the other 10,000 currently in existence. Known as the paleognaths, this small clade features many of the largest and heaviest avian specimens on Earth, bringing together ostriches and their distant South American relatives the rheas, as well as emus and cassowaries. Kiwis and ground-dwelling species known as tinamous complete the family. None of these birds can fly, except for the tinamous. Paleognath eggs are also somewhat distinct from the rest of the avian population, being larger and sporting thicker shells. Advanced genetic analyses in the late 2000's have upended researchers' understanding of in what sequence these birds have evolved, and how they are related to each other. The new phylogenetic family tree offers the opportunity to re-evaluate previous conclusions about this group, which could in turn clarify the evolution and lifestyle of flightless modern and extinct dinosaurs. Choi et al. decided to use this updated genetic information to better understand how paleognath eggs have evolved. Traditionally, these have been loosely classified into three types (rhea-style, ostrich-style and tinamou-style) based on various morphological features. Their microstructure, however, remains poorly studied, and it is unclear whether this categorisation reflects evolutionary processes. Aiming to fill this gap, Choi et al. employed electron microscopy approaches to examine the microstructure of the eggshell in all groups of paleognath birds (including the now extinct moas from New Zealand and elephant birds from Madagascar), as well as in selected species of flying birds and non-avian dinosaurs. Combined with the new evolutionary tree and additional analyses, these experiments suggest that the ancestor of the paleognaths laid rhea-style eggs, which are still the most common type amongst the family. In fact, several non-paleognath bird eggs also showed these features. In contrast, ostrich-style and tinamou-style eggs seem to have evolved independently in several distantly related species within the group. Equipped with this knowledge, it may become possible for ornithologists to decipher how eggshells evolved in other lineages of flightless birds, and for palaeontologists to better interpret fossil bird and other dinosaur eggs.


Subject(s)
Birds , Egg Shell , Animals , Crystallography , Egg Shell/chemistry , Birds/genetics , Phylogeny , Genome , Biological Evolution
6.
Sci Rep ; 11(1): 10021, 2021 05 11.
Article in English | MEDLINE | ID: mdl-33976315

ABSTRACT

A new Cretaceous ootaxon (eggshell type) from the Kaiparowits Formation of Grand Staircase-Escalante National Monument is among a growing number of very small eggs described from the Mesozoic. Analyses of two partial eggs (~ 17.7 mm in diameter) and 29 eggshell fragments reveal that this new ootaxon exhibits nodose ornamentation with distinctive branching pore canals that open atop the nodes. Its two-layered microstructure consists of a mammillary layer and a continuous layer with rugged grain boundaries between calcite grains. Although the exact identity of the egg producer is unknown, the eggshell microstructure and small size is consistent with a small-bodied avian or non-avian theropod. The specific combination of small egg size, branching pores, two-layered microstructure, and dispersituberculate ornamentation preserved in this new ootaxon is unique among theropod eggs. This underscores that both eggshell and skeletal fossils of Cretaceous theropods can display a mosaic of transitional morphological and behavioural features characteristic of both avian and non-avian taxa. As such, this new ootaxon increases the diversity of Cretaceous eggs and informs our understanding of the evolution of theropod eggshell microstructure and morphology.

7.
Nat Ecol Evol ; 5(1): 32-37, 2021 01.
Article in English | MEDLINE | ID: mdl-33139921

ABSTRACT

When sociality evolved and in which groups remain open questions in mammalian evolution, largely due to the fragmentary Mesozoic mammal fossil record. Nevertheless, exceptionally preserved fossils collected in well-constrained geologic and spatial frameworks can provide glimpses into these more fleeting aspects of early mammalian behaviour. Here we report on exceptional specimens of a multituberculate, Filikomys primaevus gen. nov., from the Late Cretaceous of Montana, primarily occurring as multi-individual, monospecific aggregates of semi-articulated skulls and skeletons within a narrow stratigraphic (~9 cm thick) and geographic (<32 m2) interval. Taphonomic and geologic evidence indicates that F. primaevus engaged in multigenerational, group-nesting and burrowing behaviour, representing the first example of social behaviour in a Mesozoic mammal. That F. primaevus was a digger is further supported by functional morphological and morphometric analyses of its postcranium. The social behaviour of F. primaevus suggests that the capacity for mammals to form social groups extends back to the Mesozoic and is not restricted to therians. Sociality is probably an evolutionarily labile trait that has arisen numerous times during mammalian evolution.


Subject(s)
Dinosaurs , Animals , Biological Evolution , Fossils , Mammals , Social Behavior
9.
Nature ; 583(7816): 406-410, 2020 07.
Article in English | MEDLINE | ID: mdl-32555457

ABSTRACT

Calcified eggshells protect developing embryos against environmental stress and contribute to reproductive success1. As modern crocodilians and birds lay hard-shelled eggs, this eggshell type has been inferred for non-avian dinosaurs. Known dinosaur eggshells are characterized by an innermost membrane, an overlying protein matrix containing calcite, and an outermost waxy cuticle2-7. The calcitic eggshell consists of one or more ultrastructural layers that differ markedly among the three major dinosaur clades, as do the configurations of respiratory pores. So far, only hadrosaurid, a few sauropodomorph and tetanuran eggshells have been discovered; the paucity of the fossil record and the lack of intermediate eggshell types challenge efforts to homologize eggshell structures across all dinosaurs8-18. Here we present mineralogical, organochemical and ultrastructural evidence for an originally non-biomineralized, soft-shelled nature of exceptionally preserved ornithischian Protoceratops and basal sauropodomorph Mussaurus eggs. Statistical evaluation of in situ Raman spectra obtained for a representative set of hard- and soft-shelled, fossil and extant diapsid eggshells clusters the originally organic but secondarily phosphatized Protoceratops and the organic Mussaurus eggshells with soft, non-biomineralized eggshells. Histology corroborates the organic composition of these soft-shelled dinosaur eggs, revealing a stratified arrangement resembling turtle soft eggshell. Through an ancestral-state reconstruction of composition and ultrastructure, we compare eggshells from Protoceratops and Mussaurus with those from other diapsids, revealing that the first dinosaur egg was soft-shelled. The calcified, hard-shelled dinosaur egg evolved independently at least three times throughout the Mesozoic era, explaining the bias towards eggshells of derived dinosaurs in the fossil record.


Subject(s)
Dinosaurs , Egg Shell/anatomy & histology , Egg Shell/chemistry , Fossils , Hardness , Animals , Biological Evolution , Biomineralization , Calcium Carbonate/analysis , Calcium Carbonate/chemistry
10.
Zookeys ; 928: 1-216, 2020.
Article in English | MEDLINE | ID: mdl-32362741

ABSTRACT

The geological and paleoenvironmental setting and the vertebrate taxonomy of the fossiliferous, Cenomanian-age deltaic sediments in eastern Morocco, generally referred to as the "Kem Kem beds", are reviewed. These strata are recognized here as the Kem Kem Group, which is composed of the lower Gara Sbaa and upper Douira formations. Both formations have yielded a similar fossil vertebrate assemblage of predominantly isolated elements pertaining to cartilaginous and bony fishes, turtles, crocodyliforms, pterosaurs, and dinosaurs, as well as invertebrate, plant, and trace fossils. These fossils, now in collections around the world, are reviewed and tabulated. The Kem Kem vertebrate fauna is biased toward large-bodied carnivores including at least four large-bodied non-avian theropods (an abelisaurid, Spinosaurus, Carcharodontosaurus, and Deltadromeus), several large-bodied pterosaurs, and several large crocodyliforms. No comparable modern terrestrial ecosystem exists with similar bias toward large-bodied carnivores. The Kem Kem vertebrate assemblage, currently the best documented association just prior to the onset of the Cenomanian-Turonian marine transgression, captures the taxonomic diversity of a widespread northern African fauna better than any other contemporary assemblage from elsewhere in Africa.

11.
Anat Rec (Hoboken) ; 303(4): 963-987, 2020 04.
Article in English | MEDLINE | ID: mdl-31943887

ABSTRACT

Fossils from the Jehol Group (Early Cretaceous, Liaoning Province, China) are integral to our understanding of Paraves, the clade of dinosaurs grouping dromaeosaurids, troodontids, and avialians, including living birds. However, many taxa are represented by specimens of unclear ontogenetic age. Without a more thorough understanding of ontogeny, evolutionary relationships and significance of character states within paravian dinosaurs may be obscured and our ability to infer their biology restricted. We describe a complete specimen of a new microraptorine dromaeosaur, Wulong bohaiensis gen. et sp. nov., from the geologically young Jiufotang Formation (Aptian) that helps solve this problem. Phylogenetic analysis recovers the specimen within a monophyletic Microraptorinae. Preserved in articulation on a single slab, the type specimen is small and exhibits osteological markers of immaturity identified in other archosaurs, such as bone texture and lack of fusion. To contextualize this signal, we histologically sampled the tibia, fibula, and humerus and compared them with new samples from the closely related and osteologically mature Sinornithosaurus. Histology shows both specimens to be young and still growing at death, indicating an age for the new dinosaur of about 1 year. The holotype possesses several feather types, including filamentous feathers, pennaceous primaries, and long rectrices, establishing that their growth preceded skeletal maturity and full adult size in some dromaeosaurids. Comparison of histology in the new taxon and Sinornithosaurus indicates that macroscopic signs of maturity developed after the first year, but before cessation of growth, demonstrating that nonhistological indicators of adulthood may be misleading when applied to dromaeosaurids. Anat Rec, 303:963-987, 2020. © 2020 American Association for Anatomy.


Subject(s)
Dinosaurs/anatomy & histology , Feathers/anatomy & histology , Fibula/anatomy & histology , Fossils , Humerus/anatomy & histology , Tibia/anatomy & histology , Animals , Biological Evolution , China , Dinosaurs/growth & development , Fibula/growth & development , Humerus/growth & development , Osteology , Phylogeny , Tibia/growth & development
12.
PLoS One ; 14(4): e0215655, 2019.
Article in English | MEDLINE | ID: mdl-31022247

ABSTRACT

Analysis of ontogenetic changes in long bone microstructure aid in vertebrate life history reconstructions. Specifically, osteohistological examination of common fauna can be used to infer growth strategies of biologically uncommon, threatened, or extinct vertebrates. Although nine-banded armadillo biology has been studied extensively, work on growth history is limited. Here we describe long bone microstructure in tibiae and femora of a limited ontogenetic series of nine- banded armadillos (Dasypus novemcinctus) to elucidate patterns of bone growth. The cortex of the smallest individual is composed of compacted coarse cancellous bone (CCCB) and woven tissue. Extensive cortical drift is driven by periosteal erosion and further compaction of trabeculae resulting in an increase in the amount of CCCB. The cortex of the largest specimens is primarily CCCB with thickened endosteal bone and thin outer cortices of lamellar and parallel-fibered tissue. The outer cortices of the largest individuals are interpreted as an external fundamental system (EFS) indicating a cessation of appositional bone growth corresponding to skeletal maturity (i.e. asymptotic or adult size). The EFS forms in femora prior to tibiae, indicating femoral growth rates begin decreasing earlier than tibial in D. novemcinctus. Growth trends in common fauna like the nine-banded armadillo can be used as a foundation for understanding life histories of related, but uncommon or extinct, species of cingulates.


Subject(s)
Armadillos/growth & development , Bone Development , Femur/growth & development , Animals , Armadillos/anatomy & histology , Femur/anatomy & histology , Femur/diagnostic imaging , Male , Microscopy, Polarization
13.
Sci Rep ; 8(1): 12454, 2018 08 20.
Article in English | MEDLINE | ID: mdl-30127534

ABSTRACT

Non-avian dinosaurs such as oviraptorosaurs and troodontids share several important reproductive characters with modern birds, including eggshell microstructure and iterative egg production. Nevertheless, debate exists concerning their incubation strategies. Here we estimate incubation period for the troodontid, Troodon formosus, by examining a near-term embryonic tooth. Synchrotron scanning and histologic thin sections allowed counting of daily (von Ebner) growth lines. The tooth preserves 31 intact lines with an average spacing of 3.3 ± 0.96 µm. Adding 8 more for the missing crown tip gives a total age of 39 days. Modern crocodilians begin to establish their functional dentition at approximately 47% through incubation. Thus, this tooth age suggests a Troodon incubation period of 74 days, falling midway between avian (44.4 days) and reptilian (107.3 days) values predicted by the Troodon egg mass (314 g). An accelerated incubation relative to modern reptiles supports brooding and concurs with a suite of features in oviraptorosaurs and troodontids (sequential laying, large complex clutches, and precocial young) that appear dependent upon both adult body and incubation temperatures elevated over ambient conditions. However, the largely buried condition of Troodon clutches may have prohibited efficient brooding, necessitating longer incubation than that of modern birds with fully exposed eggs.


Subject(s)
Dinosaurs/anatomy & histology , Animals , Biological Evolution , Birds/anatomy & histology , Egg Shell/anatomy & histology , Eggs , Fossils/anatomy & histology , Reproduction/physiology , Tooth/anatomy & histology
14.
Sci Rep ; 7: 44942, 2017 03 30.
Article in English | MEDLINE | ID: mdl-28358353

ABSTRACT

A new species of tyrannosaurid from the upper Two Medicine Formation of Montana supports the presence of a Laramidian anagenetic (ancestor-descendant) lineage of Late Cretaceous tyrannosaurids. In concert with other anagenetic lineages of dinosaurs from the same time and place, this suggests that anagenesis could have been a widespread mechanism generating species diversity amongst dinosaurs, and perhaps beyond. We studied the excellent fossil record of the tyrannosaurid to test that hypothesis. Phylogenetic analysis places this new taxon as the sister species to Daspletosaurus torosus. However, given their close phylogenetic relationship, geographic proximity, and temporal succession, where D. torosus (~76.7-75.2 Ma) precedes the younger new species (~75.1-74.4 Ma), we argue that the two forms most likely represent a single anagenetic lineage. Daspletosaurus was an important apex predator in the late Campanian dinosaur faunas of Laramidia; its absence from later units indicates it was extinct before Tyrannosaurus rex dispersed into Laramidia from Asia. In addition to its evolutionary implications, the texture of the facial bones of the new taxon, and other derived tyrannosauroids, indicates a scaly integument with high tactile sensitivity. Most significantly, the lower jaw shows evidence for neurovasculature that is also seen in birds.


Subject(s)
Alligators and Crocodiles/anatomy & histology , Alligators and Crocodiles/physiology , Dinosaurs/anatomy & histology , Dinosaurs/physiology , Animals , Dinosaurs/classification , Fossils , Paleontology , Phylogeny
15.
Proc Biol Sci ; 284(1847)2017 01 25.
Article in English | MEDLINE | ID: mdl-28123087

ABSTRACT

Iguanomorpha (stem + crown Iguania) is a diverse squamate clade with members that predominate many modern American lizard ecosystems. However, the temporal and palaeobiogeographic origins of its constituent crown clades (e.g. Pleurodonta (basilisks, iguanas, and their relatives)) are poorly constrained, mainly due to a meagre Mesozoic-age fossil record. Here, we report on two nearly complete skeletons from the Late Cretaceous (Campanian) of North America that represent a new and relatively large-bodied and possibly herbivorous iguanomorph that inhabited a semi-arid environment. The new taxon exhibits a mosaic of anatomical features traditionally used in diagnosing Iguania and non-iguanian squamates (i.e. Scleroglossa; e.g. parietal foramen at the frontoparietal suture, astragalocalcaneal notch in the tibia, respectively). Our cladistic analysis of Squamata revealed a phylogenetic link between Campanian-age North American and East Asian stem iguanomorphs (i.e. the new taxon + Temujiniidae). These results and our evaluation of the squamate fossil record suggest that crown pleurodontans were restricted to the low-latitude Neotropics prior to their early Palaeogene first appearances in the mid-latitudes of North America.


Subject(s)
Fossils , Lizards/classification , Phylogeny , Animals , North America
16.
PLoS One ; 11(7): e0158496, 2016.
Article in English | MEDLINE | ID: mdl-27391420

ABSTRACT

Diapsids show an extremely wide range of reproductive strategies. Offspring may receive no parental care, care from only one sex, care from both parents, or care under more complex regimes. Young may vary from independent, super-precocial hatchlings to altricial neonates needing much care before leaving the nest. Parents can invest heavily in a few young, or less so in a larger number. Here we examine the evolution of these traits across a composite phylogeny spanning the extant diapsids and including the limited number of extinct taxa for which reproductive strategies can be well constrained. Generalized estimating equation(GEE)-based phylogenetic comparative methods demonstrate the influences of body mass, parental care strategy and hatchling maturity on clutch volume across the diapsids. The influence of polygamous reproduction is not important despite a large sample size. Applying the results of these models to the dinosaurs supports the hypothesis of paternal care (male only) in derived non-avian theropods, previously suggested based on simpler analyses. These data also suggest that sauropodomorphs did not care for their young. The evolution of parental-care occurs in an almost linear series of transitions. Paternal care rarely gives rise to other care strategies. Where hatchling condition changes, diapsids show an almost unidirectional tendency of evolution towards increased altriciality. Transitions to social monogamy from the ancestral state in diapsids, where both sexes are polygamous, are common. In contrast, once evolved, polygyny and polyandry are very evolutionarily stable. Polygyny and maternal care correlate, as do polyandry and paternal care. Ancestral-character estimation (ACE) of these care strategies with the character transition likelihoods estimated from the original data gives good confidence at most important nodes. These analyses suggest that the basalmost diapsids had no parental care. Crocodilians independently evolved maternal care, paternal care evolved in the saurischian line, prior to derived theropod dinosaurs, and the most basal neognaths likely exhibited biparental care. Overall, the evolution of parental care among diapsids shows a persistent trend towards increased care of offspring, and more complex care strategies and behaviors with time. Reversions to reduced care are infrequent.


Subject(s)
Biological Evolution , Fossils , Reproduction/physiology , Alligators and Crocodiles , Animals , Birds , Dinosaurs , Lizards , Male , Phylogeny , Snakes , Turtles
17.
PLoS One ; 10(6): e0128458, 2015.
Article in English | MEDLINE | ID: mdl-26030147

ABSTRACT

Embryonic remains within a small (4.75 by 2.23 cm) egg from the Late Cretaceous, Mongolia are here re-described. High-resolution X-ray computed tomography (HRCT) was used to digitally prepare and describe the enclosed embryonic bones. The egg, IGM (Mongolian Institute for Geology, Ulaanbaatar) 100/2010, with a three-part shell microstructure, was originally assigned to Neoceratopsia implying extensive homoplasy among eggshell characters across Dinosauria. Re-examination finds the forelimb significantly longer than the hindlimbs, proportions suggesting an avian identification. Additional, postcranial apomorphies (strut-like coracoid, cranially located humeral condyles, olecranon fossa, slender radius relative to the ulna, trochanteric crest on the femur, and ulna longer than the humerus) identify the embryo as avian. Presence of a dorsal coracoid fossa and a craniocaudally compressed distal humerus with a strongly angled distal margin support a diagnosis of IGM 100/2010 as an enantiornithine. Re-identification eliminates the implied homoplasy of this tri-laminate eggshell structure, and instead associates enantiornithine birds with eggshell microstructure composed of a mammillary, squamatic, and external zones. Posture of the embryo follows that of other theropods with fore- and hindlimbs folded parallel to the vertebral column and the elbow pointing caudally just dorsal to the knees. The size of the egg and embryo of IGM 100/2010 is similar to the two other Mongolian enantiornithine eggs. Well-ossified skeletons, as in this specimen, characterize all known enantiornithine embryos suggesting precocial hatchlings, comparing closely to late stage embryos of modern precocial birds that are both flight- and run-capable upon hatching. Extensive ossification in enantiornithine embryos may contribute to their relatively abundant representation in the fossil record. Neoceratopsian eggs remain unrecognized in the fossil record.


Subject(s)
Birds/embryology , Fossils , Animals , Birds/anatomy & histology , Models, Anatomic
18.
Science ; 346(6215): 1253293, 2014 Dec 12.
Article in English | MEDLINE | ID: mdl-25504729

ABSTRACT

Recent discoveries of spectacular dinosaur fossils overwhelmingly support the hypothesis that birds are descended from maniraptoran theropod dinosaurs, and furthermore, demonstrate that distinctive bird characteristics such as feathers, flight, endothermic physiology, unique strategies for reproduction and growth, and a novel pulmonary system originated among Mesozoic terrestrial dinosaurs. The transition from ground-living to flight-capable theropod dinosaurs now probably represents one of the best-documented major evolutionary transitions in life history. Recent studies in developmental biology and other disciplines provide additional insights into how bird characteristics originated and evolved. The iconic features of extant birds for the most part evolved in a gradual and stepwise fashion throughout archosaur evolution. However, new data also highlight occasional bursts of morphological novelty at certain stages particularly close to the origin of birds and an unavoidable complex, mosaic evolutionary distribution of major bird characteristics on the theropod tree. Research into bird origins provides a premier example of how paleontological and neontological data can interact to reveal the complexity of major innovations, to answer key evolutionary questions, and to lead to new research directions. A better understanding of bird origins requires multifaceted and integrative approaches, yet fossils necessarily provide the final test of any evolutionary model.


Subject(s)
Biological Evolution , Birds , Dinosaurs , Animals , Birds/anatomy & histology , Birds/classification , Birds/physiology , Dinosaurs/classification , Feathers/anatomy & histology , Female , Flight, Animal , Fossils , Male , Morphogenesis , Phylogeny , Reproduction , Respiratory System/anatomy & histology , Wings, Animal/anatomy & histology
19.
PLoS One ; 9(6): e90751, 2014.
Article in English | MEDLINE | ID: mdl-24603467

ABSTRACT

We describe an extensive ichnofossil assemblage from the likely Cenomanian-age 'lower' and 'upper' units of the 'Kem Kem beds' in southeastern Morocco. In the lower unit, trace fossils include narrow vertical burrows in cross-bedded sandstones and borings in dinosaur bone, with the latter identified as the insect ichnotaxon Cubiculum ornatus. In the upper unit, several horizons preserve abundant footprints from theropod dinosaurs. Sauropod and ornithischian footprints are much rarer, similar to the record for fossil bone and teeth in the Kem Kem assemblage. The upper unit also preserves a variety of invertebrate traces including Conichnus (the resting trace of a sea-anemone), Scolicia (a gastropod trace), Beaconites (a probable annelid burrow), and subvertical burrows likely created by crabs for residence and detrital feeding on a tidal flat. The ichnofossil assemblage from the Upper Cretaceous Kem Kem beds contributes evidence for a transition from predominantly terrestrial to marine deposition. Body fossil and ichnofossil records together provide a detailed view of faunal diversity and local conditions within a fluvial and deltaic depositional setting on the northwestern coast of Africa toward the end of the Cretaceous.


Subject(s)
Dinosaurs/anatomy & histology , Fossils , Animals , Biodiversity , Ecosystem , Foot/anatomy & histology , Morocco
20.
PLoS One ; 7(9): e45203, 2012.
Article in English | MEDLINE | ID: mdl-23028847

ABSTRACT

A second nearly complete, articulated specimen of the basal troodontid Mei long (DNHM D2154) is reported from the Early Cretaceous (Hauterivian-Valanginian) lower Yixian Formation, Liaoning Province, China. New diagnostic features of Mei long are identified, including: a uniquely shaped maxilla, low with small, low maxillary fenestra; sacrum with an extremely wide caudal portion and elongate 4(th) and 5(th) sacral processes; and a large distal articular surface on the tibiotarsus which continues caudally on the tibia. A phylogenetic analysis including new data from the second specimen recovered Mei as a basal troodontid, in keeping with previous analyses. Although the skeleton exhibits several juvenile-like features including free cervical ribs, unfused frontals and nasals, and a short snouted skull, other attributes, full fusion of all neurocentral synostoses and the sacrum, and dense exteriors to cortical bone, suggest a small, mature individual. Microscopic examination of tibia and fibula histology confirms maturity and suggests an individual greater than two years old with slowed growth. Despite being one of the smallest dinosaurs, Mei long exhibits multi-year growth and cortical bone consisting largely of fibro-lamellar tissue marked by lines of arrested growth as in much larger and more basal theropods. This Mei long specimen lies in a similar but mirrored sleeping position to that of the holotype, strengthening the hypothesis that both specimens were preserved in a stereotypical life position. Like many Liaoning specimens, the new specimen also lacks extensive taphonomic and stratigraphic data, making further behavioral inference problematic.


Subject(s)
Biological Evolution , Bone and Bones/anatomy & histology , Dinosaurs/anatomy & histology , Animals , Bone and Bones/physiology , China , Dinosaurs/physiology , Fossils , Histocytochemistry , Phylogeny , Phylogeography
SELECTION OF CITATIONS
SEARCH DETAIL
...