Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Environ Sci Pollut Res Int ; 31(17): 25524-25537, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38472585

ABSTRACT

Biodiesel is a highly promising and viable alternative to fossil-based diesel that also addresses the urgent need for effective waste management. It can be synthesized by the chemical modification of triglycerides sourced from vegetable origin, animal fat, or algal oil. The transesterification reaction is the preferred method of producing biodiesel. However, the non-miscibility of alcohol and oil layer causes excessive utilization of alcohol, catalyst, and a substantial reacting time and temperature. In the current investigation, transesterification of waste fish oil was performed with petro-diesel as cosolvent, under the influence of ultrasound energy. The combination of both techniques is a unique and efficient way to minimize the mass transfer limitations considerably and hence reduces the parameters of the reaction. It is also a sincere effort to comply with the principles of green chemistry. The optimum reaction conditions were obtained using response surface methodology (RSM) that were as follows: molar ratio of methanol to oil 9.09:1, catalyst concentration of 0.97 wt%, cosolvent concentration of 29.1 wt%, temperature 60.1℃, and a reacting time 30 min. Under these listed conditions, 98.1% biodiesel was achievable, which was in close agreement with the expected result. In addition, the cosolvent removal step from the crude biodiesel was also eliminated as it could be employed as a blended fuel in CI engines.


Subject(s)
Biofuels , Plant Oils , Animals , Esterification , Methanol , Catalysis
2.
Bioinorg Chem Appl ; 2022: 4669723, 2022.
Article in English | MEDLINE | ID: mdl-36082190

ABSTRACT

Bread is one of the highest-selling food products throughout the world. Lots of demand arose from the bread producers by the consumers to convert the traditional bread into functional food. In this study, normal bread was converted to functional herbal bread by infusing it with extracts of Glycyrrhiza glabra. The functional components of the Glycyrrhiza glabra were analyzed by liquid chromatography-mass spectroscopy (LCMS). The antioxidant study revealed that the extract has high antioxidant potency. The present study also investigated the antidiabetic potency of the extract. Bread is fortified with various percentages of Glycyrrhiza glabra, such as 2, 4, and 6. The fortified bread was analyzed for various sensory and taste parameters. Biochemical assays such as the in vitro digestibility test and glycaemic index suggest that fortified bread reduces the glycaemic index. From the study, it was inferred that 6% of infused bread was found to have high potency as a functional food when compared to 2 and 4%. From the above study, it was suggested that fortified bread reduces the glycaemic index and is best suited for diabetic people and diet watchers.

3.
Chemosphere ; 308(Pt 1): 136049, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35977574

ABSTRACT

This study focuses on effectively utilizing the biodiesel extracted from Azolla (third-generation biofuel), which is regarded as a renewable energy source, for fueling diesel engines. Biodiesel is unique due to its increased viscosity and different fatty acid composition, which proved difficult to attain better engine performance with a mechanical type injection system. This study expands on the previous investigation in modifying the fuel system when using Azolla biodiesel by using a common rail fuel injection system with wider injection flexibility. Considering the lack of more engine optimization studies for Azolla biodiesel, a parametric study is conducted by changing the fuel injection pressure in the range between 300 bar and 900 bar for diesel engine fueled by B20 (20% Azolla +80% diesel) blend. The experimental engine study revealed that the physical properties of the fuel adversely affect the in-cylinder combustion, which leads to poor engine performance and higher emissions at lower injection pressure (300 bar) for B20 when compared to diesel. As the injection pressure increases, the fuel atomization and other spray characteristics are enhanced and thereby improve the combustion. The Brake Thermal Efficiency (BTE) for B20 at 900 bar injection pressure is 3% higher than the diesel fuel at 300 bar injection pressure under full load conditions. The HC, CO, and smoke emission in the engine exhaust for B20 at 900 bar injection pressure was reduced by 13.3%, 28.5%, and 12.3%, respectively, when compared to diesel. Overall, this study recommends the operation of Azolla biodiesel blend in diesel at 900 bar fuel injection pressure to attain improved engine characteristics.


Subject(s)
Biofuels , Gasoline , Biofuels/analysis , Carbon Monoxide/analysis , Fatty Acids , Gasoline/analysis , Smoke/analysis , Vehicle Emissions/analysis
4.
Environ Sci Pollut Res Int ; 28(10): 11942-11953, 2021 Mar.
Article in English | MEDLINE | ID: mdl-32144698

ABSTRACT

The performance of engine parameters is more influenced with fuel injection strategies namely start of main injection timing (SoMI). An experimental analysis was performed to find the optimum SoMI timing based on performance, emission, and combustion characteristics. Base fuel of diesel and neem biodiesel was used as test fuels. The neem biodiesel was prepared by esterification and transesterification process. It is found from literature that neem biodiesel blend NB20 with diesel gives optimum performance and emission characteristics; therefore, NB20 blend was used for experiments. A variable geometry turbocharger (VGT) compression ignition (CI) engine was used to conduct the experiments. Engine performance parameters were estimated and compared with a base fuel of diesel and with NB20 blends. In this experimentation, fuel injection pressure (FIP) of 800 bar and engine speed of 1700 rpm were considered. SoMI timing was varied from 2° to 10° bTDC with an increment of 2° bTDC timing. Cylinder pressure (CP) and heat release rate (HRR) were estimated and found that are higher for diesel fuel compared to NB20 blend at different SoMI timings. The addition of neem biodiesel NB20 blend to diesel fuel decreases the exhaust emissions except NOx emissions. The BSFC was considerably reduced and BTE was improved almost equivalent to the diesel fuel for NB20. From the results, it is concluded that 10° bTDC SoMI timing provides 13% improvement in BTE, 21% decrement in BSFC, and 7.5% reduction in CO2 emissions.


Subject(s)
Biofuels , Carbon Monoxide , Carbon Monoxide/analysis , Esterification , Gasoline , Vehicle Emissions
5.
Environ Sci Pollut Res Int ; 28(10): 11988-11999, 2021 Mar.
Article in English | MEDLINE | ID: mdl-32306257

ABSTRACT

Use of biodiesel in diesel engine helps to reduce HC, CO, and smoke emissions due to their enormous oxygen content, whereas NOx emissions formed by Zeldovich mechanism shoot up. Implementation of Bharat Stage (BS) VI by April 2020 in India has created extreme pressure on automobile manufacturers to include after treatment technology in their systems. Selective catalytic reduction (SCR), a NOx control technology, is operated using aqueous urea solution as the reductant. There are several parameters that need to be monitored to enhance the NOx conversion efficiency of SCR retrofit. The uniformity index of ammonia, which determines the conversion efficiency, is greatly influenced by parameters like exhaust gas temperature, injection angle, injector position, mass flow rate, and SCR geometry. This paper considers two types of SCR design, namely SCR with and without mixer design and their impact on NOx reduction. The effect of mass flow rate on urea conversion in SCR design without mixer is 27%, but the impact is reduced greatly in SCR design with mixer with less than 2% variation. The UI resulting from different cases ranges from 0.59 to 0.83. Using Taguchi technique and CFD tool, the impact of parameters on both the SCR designs has been investigated and the optimum SCR design is reported.


Subject(s)
Gasoline , Urea , Catalysis , India , Vehicle Emissions
6.
Environ Sci Pollut Res Int ; 28(26): 33866-33879, 2021 Jul.
Article in English | MEDLINE | ID: mdl-32754883

ABSTRACT

This study aims to enhance the turbulence of direct injection (DI) diesel engine by modifying the inlet manifold design with an inclined nozzle-like provision angles of 30°, 60°, and 90° along with its regular intake system. Numerical analysis was carried out using the computational fluid dynamics package (STAR-CD libraries of es-ice) to study the flow field and combustion characteristic with the modified intake manifold geometries. The computational investigation was carried out for both single and double pass conditions at 1500 rpm under high-load operating condition (5.2 kW). The computational results showed that the velocity magnitude of modified single pass intake manifold increases by about 10% that results in higher turbulence even near the point of fuel injection. Through the modification in the inlet manifold, the combustion parameters such as in-cylinder pressure and in-cylinder temperature are increased as compared to the standard manifold for the same quantity of fuel injected per cycle. In summary, the 60° modified manifold with a single pass shows better combustion and emission characteristics compared to that of regular inflow manifolds due to the improvement in turbulence levels.


Subject(s)
Gasoline , Vehicle Emissions , Bays , Biofuels , Pressure , Temperature
7.
Environ Sci Pollut Res Int ; 27(24): 29703-29716, 2020 Aug.
Article in English | MEDLINE | ID: mdl-31410826

ABSTRACT

Stringent emission norms impose challenges to original equipment manufacturer (OEM) in reducing diesel engine emissions. Implementing renewable fuels as alternative energy sources in diesel engines leads to increased emission levels particularly NOx. In this work, performance, combustion, and emission parameters from a diesel engine powered with grapeseed oil biodiesel (GSBD) was investigated. Nano additive emulsions of cerium oxide (CeO2) and zinc oxide (ZnO) at 100 ppm each were added to grapeseed oil biodiesel. To enhance the NOx reduction task further, an advanced technology called selective catalytic reduction (SCR) system was used. With easy availability of aqueous urea, careful injection, and distribution of the reductant solution, a paradigm change was brought about in NOx reduction technology. The experiments were carried out with and without SCR for better understanding and investigation. The percentage reduction of NOx emission by adding cerium oxide and zinc oxide emulsion blends were 4.19% and 13.13%, respectively. The overall reduction in NOx emission were 74.16% and 80.06% with SCR for cerium oxide and zinc oxide emulsion blends. The research conclusions make grapeseed oil biodiesel conceivable as an effective alternate fuel for diesel engines without any engine modifications.


Subject(s)
Biofuels , Gasoline , Catalysis , Vehicle Emissions , Water
8.
Environ Sci Pollut Res Int ; 27(20): 24702-24722, 2020 Jul.
Article in English | MEDLINE | ID: mdl-31487009

ABSTRACT

This study is focused on artificial neural network (ANN) modelling of non-modified diesel engine keyed up by the combination of two low viscous biofuels to forecast the parameters of emission and performance. The diesel engine is energised with five different test fuels of the combination of citronella and Cymbopogon flexuous biofuel (C50CF50) with diesel at precise blends of B20, B30, B40, B50 and B100 in which these numbers represent the contents of combination of biofuel and the investigation is carried out from zero to full load condition. The experimental result was found that the B20 blend had improved BTE at all load states compared with the remaining biofuel blends. At 100% load state, BTE (31.5%) and fuel consumption (13.01 g/kW-h) for the B20 blend was closer to diesel. However, the B50 blend had minimal HC (0.04 to 0.157 g/kW-h), CO (0.89 to 2.025 g/kW-h) and smoke (7.8 to 60.09%) emission than other test fuels at low and high load states. The CO2 emission was the penalty for complete combustion. The NOx emission was higher for all the biodiesel blends than diesel by 6.12%, 8%, 11.53%, 14.81% and 3.15% for B20, B30, B40, B50 and B100 respectively at 100% load condition. The reference parameters are identified as blend concentration percentage and brake power values. The trained ANN models exhibit a magnificent value of 97% coefficient of determination and the high R values ranging between 0.9076 and 0.9965 and the low MAPE values ranging between 0.98 and 4.26%. The analytical results also provide supportive evidence for the B20 blend which in turn concludes B20 as an effective alternative fuel for diesel.


Subject(s)
Biofuels/analysis , Gasoline/analysis , Neural Networks, Computer , Smoke , Vehicle Emissions/analysis
9.
Environ Sci Pollut Res Int ; 26(15): 15573-15599, 2019 May.
Article in English | MEDLINE | ID: mdl-30945081

ABSTRACT

The present study presented an inclusive analysis of engine exhaust emission characteristics of direct injection diesel engine fuelled with diesel and biofuel. Biofuel used in this investigation was obtained by steam distillation from pine oil. A single-cylinder, four-stroke diesel engine was used for this purpose. In this work, performance characteristics like brake thermal efficiency (BTE) and brake-specific fuel consumption (BSFC) were analysed. The engine pollutants, namely nitrogen oxide (NO), carbon monoxide (CO), hydrocarbon (HC), and smoke, were examined. In addition, combustion characteristics like in-cylinder pressure and heat release rate were presented. Two engine modification techniques, namely thermal barrier coating and the addition of antioxidant to biofuel, were attempted. The advantage of thermal barrier coating is to reduce heat loss from the engine and convert the accumulated heat into useful piston work. In this work, partially stabilised zirconia was used as the coating material. The usage of antioxidant-treated biofuel in a diesel engine was said to be the prominent approach for NOx emission reduction. Three different antioxidants, namely butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT), tertiary-butyl hydroquinone (TBHQ), were exclusively dissolved at a concentration of 1% by volume with PO fuel. The obtained performance and emission characteristics of the uncoated engine were compared with the thermally coated engine. From the results, it was observed that the PO biofuel may be a promising alternative in the near prospect with the thermal barrier coating technique to enhance the performance, combustion and emission characteristics of diesel engine. The PO+TBHQ blend was considered as more beneficial than PO+BHT and PO+BHA on account of its performance, combustion and emission characteristics. The effectiveness of the antioxidant was shown in the order of TBHQ>BHA>BHT.


Subject(s)
Antioxidants/chemistry , Biofuels/analysis , Carbon Monoxide/analysis , Hydrocarbons/chemistry , Hydroquinones/chemistry , Nitric Oxide/chemistry , Smoke/analysis , Vehicle Emissions/analysis , Carbon Monoxide/chemistry , Hot Temperature , Hydrocarbons/analysis , Nitrogen Oxides/analysis
10.
Environ Sci Pollut Res Int ; 26(9): 8685-8695, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30707382

ABSTRACT

A vegetable oil-fueled diesel engine operation is characterized by low brake thermal efficiency and relatively high smoke emission. Conversion of vegetable oil to biodiesel results in slight improvement in efficiency and smoke emission, but the values are not comparable with diesel. In this work, a single-cylinder diesel engine's performance is evaluated by inducting hydrogen in small quantities in the intake manifold along with Deccan hemp oil (DHO) and its methyl ester (DHOME) as the pilot fuel. The tests were conducted at part-load and full-load conditions at an engine speed of 1500 rpm. Results indicate an increase in brake thermal efficiency from 29.7 to 32.6% and from 27.3 to 29.6% at full load with hydrogen-induced DHOME and DHO engine operation. Unburned-hydrocarbon emissions, carbon monoxide emission, and smoke emission reduced for both the fuels. However, NOx levels increased for the two fuels because hydrogen induction causes high combustion rates and high temperature in the combustion chamber. Hydrogen induction leads to high premixed combustion resulting in high peak pressures.


Subject(s)
Biofuels , Cannabis , Plant Oils , Vehicle Emissions/analysis , Carbon Monoxide/analysis , Esters , Gasoline , Hydrocarbons , Hydrogen
11.
Environ Sci Pollut Res Int ; 26(5): 5008-5019, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30604362

ABSTRACT

The purpose of this study is to experimentally investigate the effect of unsaturation of the biodiesels obtained from grapeseed oil, wheat germ oil and coconut oil (reference fuel) for compression ignition (CI) engine application. Fatty acid profile analysis and physio-chemical properties were determined by standard test procedures. Engine testing was carried out in a 5.2-kW single-cylinder CI engine and the combustion, performance and emission characteristics were analysed. The effect of fuel property variation and the combustion reaction kinetics due to unsaturation difference have been discussed. The maximum brake thermal efficiency at full load for diesel was found to be 32.3% followed by 31.3%, 30.2% and 27.4 %, respectively, for coconut biodiesel (CBD), grapeseed biodiesel (GSBD) and wheat germ biodiesel (WGBD). Maximum heat release rate as observed for diesel, CBD, GSBD and WGBD are 63.2 J/°CA 60.7 J/°CA and 59 J/°CA and 43.4 J/°CA respectively. The brake-specific NO emission at full load is higher for CBD followed by GSBD, WGBD and diesel having values of 9.23 g/kWh, 8.91 g/kWh, 8.21 g/kWh and 7.6 g/kWh respectively. Conversely, the smoke emission is lower for CBD compared to the other tested fuels.


Subject(s)
Biofuels/analysis , Food-Processing Industry , Industrial Waste/analysis , Plant Oils/chemistry , Vehicle Emissions/analysis , Biomass , Hot Temperature
12.
Environ Sci Pollut Res Int ; 25(35): 35715-35724, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30357667

ABSTRACT

The present study investigates the effect of blending oxygenate namely diethylene glycol dimethyl ether (diglyme) with minor vegetable oil namely rubber seed oil (RSO), babassu oil (BSO), and their blends in various proportions (R75B25, R50B50, and R25B75) on NOx-smoke trade-off and other engine characteristics. The tests were conducted on a commercial twin cylinder compression-ignition (CI) engine commonly used in tractors. The potential of the blends with diglyme is assessed based on performance, emission, and combustion characteristics of the engine at different load conditions. The tests were conducted at a constant speed of 1500 rpm maintaining the original injection timing and pressure. Compared to diesel, RSO, and BSO, and their blends exhibited inferior combustion due to poor physical properties like high viscosity and density. This resulted in a lower brake thermal efficiency with increase in HC, CO, and smoke emissions compared to diesel at all the load conditions. The augmented effect is observed with increase in BSO proportion for the blends and neat BSO. The poor combustion of minor vegetable oil and its blends lead to lower NOx emission as a result of lower in-cylinder temperature. To improve the performance and NOx-smoke trade-off, diglyme (DGM) was added with all the test fuels with the optimum share of 20% (by volume). Addition of DGM, increased brake thermal efficiency by 2-7% for all the test fuels due to improved combustion as a result of additional fuel bound oxygen in DGM and improved fuel blend properties. DGM addition reduced smoke, HC, and CO emission drastically with a slight increase in NOx emission compared to minor vegetable oil blends. The study shows that addition of DGM showed a promising note in NOx-smoke trade-off without affecting the other engine parameters.


Subject(s)
Ethylene Glycols/chemistry , Methyl Ethers/chemistry , Nitric Oxide/chemistry , Plant Oils/chemistry , Vehicle Emissions/analysis , Gasoline/analysis , Motor Vehicles , Nitric Oxide/analysis , Oxygen/chemistry , Smoke/analysis
13.
Environ Sci Pollut Res Int ; 25(16): 15368-15377, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29564702

ABSTRACT

The present study intends to explore the effect of the addition of fuel additives with camphor oil (CMO) on the characteristics of a twin-cylinder compression ignition (CI) engine. The lower viscosity and boiling point of CMO when compared to diesel could improve the fuel atomization, evaporation, and air/fuel mixing process. However, the lower cetane index of CMO limits its use as a drop in fuel for diesel in CI engine. In general, NOX emission increases for less viscous and low cetane (LVLC) fuels due to pronounced premixed combustion phase. To improve the ignition characteristics and decrease NOX emissions, fuel additives such as diglyme (DGE)-a cetane enhancer, cumene (CU)-an antioxidant, and eugenol (EU) and acetone (A)-bio-additives, are added 10% by volume with CMO. The engine used for the experimentation is a twin-cylinder tractor engine that runs at a constant speed of 1500 rpm. The engine was operated with diesel initially to attain warm-up condition, which facilitates the operation of neat CMO. At full load condition, brake thermal efficiency (BTE) for CMO is higher (29.6%) than that of diesel (28.1%), while NOX emission is increased by 9.4%. With DGE10 (10% DGE + 90% CMO), the ignition characteristics of CMO are improved and BTE is increased to 31.7% at full load condition. With EU10 (10% EU + 90% CMO) and A10 (10% A + 90% CMO), NOX emission is decreased by 24.6 and 17.8% when compared to diesel, while BTE is comparable to diesel. While HC and CO emission decreased for DGE10 and CU10, they increased for EU10 and A10 when compared to baseline diesel and CMO.


Subject(s)
Antioxidants/chemistry , Biofuels , Camphor/chemistry , Gasoline , Vehicle Emissions
14.
Environ Sci Pollut Res Int ; 24(32): 25103-25113, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28921217

ABSTRACT

The present study deals with performance, emission and combustion studies in a single cylinder CI engine with lower and higher alcohol fuel synergies with biofuel blends and exhaust treatment system. Karanja oil methyl ester (KOME), widely available biofuel in India, and orange oil (ORG), a low carbon biofuel, were taken for this study, and equal volume blend was prepared for testing. Methanol (M) and n-pentanol (P) was taken as lower and higher alcohol and blended 20% by volume with KOME-ORG blend. Activated carbon-based exhaust treatment indigenous system was designed and tested with KOME-ORG + M20 and KOME-ORG + P20 blend. The tests were carried out at various load conditions at a constant speed of 1500 rpm. The study revealed that considering performance, emission and combustion studies, KOME-ORG + M20 + activated carbon are found optimum in reducing NO, smoke and CO2 emission. Compared to KOME, for KOME-ORG + M20 + activated carbon, NO emission is reduced from 10.25 to 7.85 g/kWh, the smoke emission is reduced from 49.4 to 28.9%, and CO2 emission is reduced from 1098.84 to 580.68 g/kWh. However, with exhaust treatment system, an increase in HC and CO emissions and reduced thermal efficiency is observed due to backpressure effects.


Subject(s)
Biofuels/analysis , Methanol/chemistry , Pentanols/chemistry , Plant Oils/chemistry , Pongamia/chemistry , Vehicle Emissions/analysis , Esters/chemistry , India
15.
Bioresour Technol ; 129: 315-20, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23262006

ABSTRACT

Animal fat residues (AFR) from waste water were used as feedstock to produce biodiesel by a two-step acid-catalyzed process. Treatment of the AFRs with 5.4% (w/w) of 17 M H2SO4 at a methanol/AFR ratio of 13:1 (50%w/w) at 60 °C converted more than 95% of the triglycerides into fatty acid methyl esters (FAMEs) with an acid value (AV) of 1.3 mgKOH/gbiodiesel. Response surface methodology indicated that a lower AV cannot be reached using a one-step acid catalyzed process. Thus a two-step acid catalyzed process was employed using 3.6% catalyst and 30% methanol for 5 h for the first step and 1.8% catalyst and 10% methanol for 1 h in the second step, resulting in a yield higher than 98% and an AV of 0.3 mgKOH/gbiodiesel. The product thus conforms to the European norm EN14214 concerning biodiesel.


Subject(s)
Biofuels , Fats/chemistry , Industrial Waste/prevention & control , Methanol/chemical synthesis , Models, Biological , Animal Husbandry , Animals , Computer Simulation , Wastewater
SELECTION OF CITATIONS
SEARCH DETAIL