Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Language
Publication year range
1.
mSphere ; 3(2)2018 04 25.
Article in English | MEDLINE | ID: mdl-29897877

ABSTRACT

The yeast-like pathogen Cryptococcus gattii is an etiological agent of cryptococcosis. The major cryptococcal virulence factor is the polysaccharide capsule, which is composed of glucuronoxylomannan (GXM), galactoxylomannan (GalXM), and mannoproteins (MPs). The GXM and GalXM polysaccharides have been extensively characterized; however, there is little information about the role of mannoproteins in capsule assembly and their participation in yeast pathogenicity. The present study characterized the function of a predicted mannoprotein from C. gattii, designated Krp1. Loss-of-function and gain-of-function mutants were generated, and phenotypes associated with the capsular architecture were evaluated. The null mutant cells were more sensitive to a cell wall stressor that disrupts beta-glucan synthesis. Also, these cells displayed increased GXM release to the culture supernatant than the wild-type strain did. The loss of Krp1 influenced cell-associated cryptococcal polysaccharide thickness and phagocytosis by J774.A1 macrophages in the early hours of interaction, but no difference in virulence in a murine model of cryptococcosis was observed. In addition, recombinant Krp1 was antigenic and differentially recognized by serum from an individual with cryptococcosis, but not with serum from an individual with candidiasis. Taken together, these results indicate that C. gattii Krp1 is important for the cell wall structure, thereby influencing capsule assembly, but is not essential for virulence in vivoIMPORTANCECryptococcus gattii has the ability to escape from the host's immune system through poorly understood mechanisms and can lead to the death of healthy individuals. The role of mannoproteins in C. gattii pathogenicity is not completely understood. The present work characterized a protein, Kpr1, that is essential for the maintenance of C. gattii main virulence factor, the polysaccharide capsule. Our data contribute to the understanding of the role of Kpr1 in capsule structuring, mainly by modulating the distribution of glucans in C. gattii cell wall.


Subject(s)
Cryptococcus gattii/chemistry , Fungal Capsules/chemistry , Fungal Proteins/chemistry , Membrane Glycoproteins/chemistry , Polysaccharides/chemistry , Virulence Factors/chemistry , Animals , Cell Line , Cell Wall/chemistry , Cryptococcosis/immunology , Cryptococcus gattii/genetics , Cryptococcus gattii/pathogenicity , Female , Fungal Proteins/genetics , Macrophages/immunology , Membrane Glycoproteins/genetics , Mice , Mutation , Phagocytosis , Phenotype , Polysaccharides/genetics , Virulence , Virulence Factors/genetics
2.
Braz. j. microbiol ; 47(4): 941-948, Oct.-Dec. 2016. tab, graf
Article in English | LILACS | ID: biblio-828200

ABSTRACT

Abstract In this study, physiological aspects of Lactobacillus plantarum BL011 growing in a new, all-animal free medium in bioreactors were evaluated aiming at the production of this important lactic acid bacterium. Cultivations were performed in submerged batch bioreactors using the Plackett-Burman methodology to evaluate the influence of temperature, aeration rate and stirring speed as well as the concentrations of liquid acid protein residue of soybean, soy peptone, corn steep liquor, and raw yeast extract. The results showed that all variables, except for corn steep liquor, significantly influenced biomass production. The best condition was applied to bioreactor cultures, which produced a maximal biomass of 17.87 g L-1, whereas lactic acid, the most important lactic acid bacteria metabolite, peaked at 37.59 g L-1, corresponding to a productivity of 1.46 g L-1 h-1. This is the first report on the use of liquid acid protein residue of soybean medium for L. plantarum growth. These results support the industrial use of this system as an alternative to produce probiotics without animal-derived ingredients to obtain high biomass concentrations in batch bioreactors.


Subject(s)
Soybean Proteins , Culture Media , Lactobacillus plantarum/growth & development , Lactobacillus plantarum/metabolism , Biomass , Lactic Acid/biosynthesis , Soybean Proteins/metabolism , Soybean Proteins/chemistry , Bioreactors , Culture Media/chemistry , Carbohydrate Metabolism , Fermentation , Hydrolysis
3.
Braz J Microbiol ; 47(4): 941-948, 2016.
Article in English | MEDLINE | ID: mdl-27522926

ABSTRACT

In this study, physiological aspects of Lactobacillus plantarum BL011 growing in a new, all-animal free medium in bioreactors were evaluated aiming at the production of this important lactic acid bacterium. Cultivations were performed in submerged batch bioreactors using the Plackett-Burman methodology to evaluate the influence of temperature, aeration rate and stirring speed as well as the concentrations of liquid acid protein residue of soybean, soy peptone, corn steep liquor, and raw yeast extract. The results showed that all variables, except for corn steep liquor, significantly influenced biomass production. The best condition was applied to bioreactor cultures, which produced a maximal biomass of 17.87gL-1, whereas lactic acid, the most important lactic acid bacteria metabolite, peaked at 37.59gL-1, corresponding to a productivity of 1.46gL-1h-1. This is the first report on the use of liquid acid protein residue of soybean medium for L. plantarum growth. These results support the industrial use of this system as an alternative to produce probiotics without animal-derived ingredients to obtain high biomass concentrations in batch bioreactors.


Subject(s)
Culture Media , Lactobacillus plantarum/growth & development , Lactobacillus plantarum/metabolism , Soybean Proteins , Biomass , Bioreactors , Carbohydrate Metabolism , Culture Media/chemistry , Fermentation , Hydrolysis , Lactic Acid/biosynthesis , Soybean Proteins/chemistry , Soybean Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL