Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Neuroinflammation ; 17(1): 282, 2020 Sep 23.
Article in English | MEDLINE | ID: mdl-32967684

ABSTRACT

BACKGROUND: Alterations in the immune system are a complication of spinal cord injury (SCI) and have been linked to an excessive sympathetic outflow to lymphoid organs. Still unknown is whether these peripheral immune changes also contribute for the deleterious inflammatory response mounted at the injured spinal cord. METHODS: We analyzed different molecular outputs of the splenic sympathetic signaling for the first 24 h after a thoracic compression SCI. We also analyzed the effect of ablating the splenic sympathetic signaling to the innate immune and inflammatory response at the spleen and spinal cord 24 h after injury. RESULTS: We found that norepinephrine (NE) levels were already raised at this time-point. Low doses of NE stimulation of splenocytes in vitro mainly affected the neutrophils' population promoting an increase in both frequency and numbers. Interestingly, the interruption of the sympathetic communication to the spleen, by ablating the splenic nerve, resulted in reduced frequencies and numbers of neutrophils both at the spleen and spinal cord 1 day post-injury. CONCLUSION: Collectively, our data demonstrates that the splenic sympathetic signaling is involved in the infiltration of neutrophils after spinal cord injury. Our findings give new mechanistic insights into the dysfunctional regulation of the inflammatory response mounted at the injured spinal cord.


Subject(s)
Adrenergic Fibers/physiology , Neutrophil Infiltration/physiology , Signal Transduction/physiology , Spinal Cord Injuries/physiopathology , Spleen/innervation , Spleen/physiology , Adrenergic Fibers/chemistry , Animals , Female , Mice , Mice, Inbred C57BL , Spinal Cord Injuries/immunology , Thoracic Vertebrae
2.
Int J Mol Sci ; 21(14)2020 Jul 17.
Article in English | MEDLINE | ID: mdl-32709070

ABSTRACT

Citalopram is a selective serotonin reuptake inhibitor, and although widely used as an antidepressant, this drug has also demonstrated interesting repairing properties leading to motor recovery and pathology amelioration in animal models of stroke and degeneration. Here, we tested the efficacy of both 7-day and 8-week citalopram treatment in a contusive spinal cord injury (SCI) rat model. A combination of behavioral tests, histological and serum cytokine analysis was used to assess overall recovery. Despite promoting a mild reduction of inflammatory cells as well as an early, but transient increase of specific serum cytokines, citalopram administration showed no overall beneficial effects on motor performance or lesion extension. Our results do not support citalopram treatment as a therapeutic strategy for SCI.


Subject(s)
Citalopram/therapeutic use , Selective Serotonin Reuptake Inhibitors/therapeutic use , Spinal Cord Injuries/drug therapy , Animals , Citalopram/administration & dosage , Disease Models, Animal , Female , Rats , Rats, Wistar , Recovery of Function/drug effects , Selective Serotonin Reuptake Inhibitors/administration & dosage , Spinal Cord/drug effects , Spinal Cord/pathology , Spinal Cord/physiopathology , Spinal Cord Injuries/pathology , Spinal Cord Injuries/physiopathology , Treatment Outcome
3.
Pharmaceuticals (Basel) ; 10(4)2017 Oct 24.
Article in English | MEDLINE | ID: mdl-29064422

ABSTRACT

Traumatic spinal cord injury (SCI) causes dramatic disability and dysfunction in the motor, sensory and autonomic systems. The severe inflammatory reaction that occurs after SCI is strongly associated with further tissue damage. As such, immunomodulatory strategies have been developed, aimed at reducing inflammation, but also at shaping the immune response in order to protect, repair and promote regeneration of spared neural tissue. One of those promising strategies is the intraspinal administration of the cytokine interleukin-4 (IL-4) that was shown to promote a phenotype on specific immune cells associated with neuroprotection and repair. In this work, we evaluated if a systemic delivery of IL-4 for a 7-days period was also capable of promoting neuroprotection after SCI by analyzing different neural cells populations and motor recovery. IL-4 treatment promoted an elevation of the anti-inflammatory cytokine IL-10 in the serum both at 24 h and 7 days after injury. Locally, treatment with IL-4 led to a reduction on cells expressing markers associated with inflammation, CD11b/c and iNOS. Importantly, IL-4 treatment increased the neuronal markers ßIII-tubulin and NeuN, and the oligodendrocyte marker O4, suggesting a neuroprotective effect. Moreover, 100% of the animals treated with IL-4 were able to recover weight support against only 33% of saline treated animals. Overall, these results show that systemic administration of IL-4 positively impacts different aspects of spinal cord injury, creating a more favorable environment for recovery to take place.

4.
Drug Discov Today ; 21(9): 1456-1463, 2016 09.
Article in English | MEDLINE | ID: mdl-27132519

ABSTRACT

Cell culture systems, either 2D or explant based, have been pivotal to better understand the pathophysiology of several central nervous system (CNS) disorders. Recently, bioengineered cell culture systems have been proposed as an alternative to the traditional setups. These innovative systems often combine different cell populations in 3D environments that more closely recapitulate the different niches that exist within the developing or adult CNS. Given the importance of such systems for the future of CNS-related research, we discuss here the most recent advances in the field, particularly those dealing with neurodegeneration, neurodevelopmental disorders, and trauma.


Subject(s)
Cell Culture Techniques , Central Nervous System Diseases , Models, Biological , Trauma, Nervous System , Animals , Humans
5.
Spine J ; 16(8): 1015-24, 2016 08.
Article in English | MEDLINE | ID: mdl-27109831

ABSTRACT

BACKGROUND CONTEXT: Damage to the spinal cord can result in irreversible impairments or complete loss of motor, sensory, and autonomic functions. Riluzole and magnesium have been widely investigated as neuroprotective agents in animal models of spinal cord injury. As these drugs protect the injured spinal cord through different mechanisms, we aimed to investigate if their neuroprotective efficacy could be cumulative. PURPOSE: This study aimed to investigate the neuroprotective efficacy of combined administration of riluzole and magnesium chloride in a contusive model of thoracic spinal cord injury. STUDY DESIGN: An in vivo experiment was set using female Wistar Han rats that underwent a thoracic spinal cord contusion (T8) using a weight drop method. An hour after injury, animals were randomly distributed to receive (1) saline, (2) riluzole (2.50 mg/kg), (3) magnesium chloride (24.18 mg/kg) in a polyethylene glycol formulation, or (4) a combined treatment (riluzole and magnesium). Subsequent treatments were given in four intraperitoneal injections (spaced 12 hours apart). METHODS: The Basso, Beattie, and Bresnahan locomotor rating scale, an activity box test, and a swimming test were used to evaluate behavioral recovery over a 4-week period. Histologic analysis of the spinal cords was performed to measure the extent and volume of the lesion, axonal preservation, serotonergic and glutamatergic fiber sparing, motor neuron survival, and inflammation. RESULTS: Our results show that only the riluzole treatment significantly improved behavioral recovery up to 4 weeks after injury when compared with saline controls (6.2±1.8), with animals achieving weight-supported stepping (9.1±1.2). Riluzole also promoted tissue sparing with significant differences achieved from 200 to 600 µm (caudally to the lesion epicenter), and reduced lesion volume, with animals presenting a significantly smaller lesion (3.23±0.26 mm(3)) when compared with the saline-treated group (4.74±0.80 mm(3)), representing a 32% decrease in lesion volume. Riluzole treatment induced significant axonal preservation, as well as serotonergic fiber sparing, caudally to the injury epicenter. CONCLUSIONS: Our results suggest that the combined treatment, although simultaneously targeting two excitotoxic-related mechanisms, did not further improve behavioral and histologic outcome when compared with riluzole given alone.


Subject(s)
Magnesium/therapeutic use , Neuroprotective Agents/therapeutic use , Riluzole/therapeutic use , Spinal Cord Injuries/drug therapy , Animals , Drug Therapy, Combination , Female , Magnesium/administration & dosage , Neuroprotective Agents/administration & dosage , Rats , Rats, Wistar , Riluzole/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL
...