Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
J Phys Chem Lett ; 15(20): 5535-5542, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38752703

ABSTRACT

In this work, La(FeCuMnMgTi)O3 HEO nanoparticles with a perovskite-type structure are synthesized and used in the electrocatalytic CO2 reduction reaction (CO2RR). The catalyst demonstrates high performance as an electrocatalyst for the CO2RR, with a Faradaic efficiency (FE) of 92.5% at a current density of 21.9 mA cm-2 under -0.75 V vs a saturated calomel electrode (SCE). Particularly, an FE above 54% is obtained for methyl isopropyl ketone (C5H10O, MIPK) at a partial current density of 16 mA cm-2, overcoming all previous works. Besides, the as-prepared HEO catalyst displays robust stability in the CO2RR. The excellent catalytic performance of La(FeCuMnMgTi)O3 is ascribed to the synergistic effect between the electronic effects associated with five cations occupying the high-entropy sublattice sites and the oxygen vacancies within the perovskite structure of the HEO. Finally, DFT calculations indicate that Cu plays a vital role in the catalytic activity of the La(FeCuMnMgTi)O3 HEO nanoparticles toward C2+ products.

2.
Nanoscale ; 16(23): 11223-11231, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38775652

ABSTRACT

Bismuth iodide perovskite nanocrystals are considered a viable alternative to the Pb halide ones due to their reduced toxicity and increased stability. However, it is still challenging to fabricate nanocrystals with a small and controlled size, and their electronic properties are not well understood. Here, we propose the growth of Bi iodide perovskite nanocrystals using different mesoporous silica with ordered pores of controlled diameter as templates. We obtain a series of confined Cs3Bi2I9 and MA3Bi2I9 perovskites with diameters of 2.3, 3.7, 7.4, and 9.2 nm, and precise size control. The complex absorption spectra of the encapsulated perovskites cannot be properly fitted using classical Tauc or Elliott formalisms. By fitting the spectra with a modified Elliott formula, the bandgap values and exciton binding energies (70-400 meV) could be extracted. The calculated bandgaps scale with the pore sizes. Using a combined experimental and theoretical approach, we demonstrate for the first time quantum confinement in 0D Bi-iodide perovskite nanocrystals.

3.
Chem Mater ; 36(6): 2898-2906, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38558914

ABSTRACT

Grain boundaries (GBs) play an important role in determining the optoelectronic properties of perovskites, requiring an atomistic understanding of the underlying mechanisms. Strain engineering has recently been employed in perovskite solar cells, providing a novel perspective on the role of perovskite GBs. Here, we theoretically investigate the impact of axial strain on the geometric and electronic properties of a common CsPbBr3 GB. We develop a machine learning force field and perform ab initio calculations to analyze the behavior of GB models with different axial strains on a nanosecond time scale. Our results demonstrate that compressing the GB efficiently suppresses structural fluctuations and eliminates trap states originating from large-scale distortions. The GB becomes more amorphous under compressive strain, which makes the relationship between the electronic structure and axial strain nonmonotonic. These results can help clarify the conflicts in perovskite GB experiments.

4.
J Phys Chem Lett ; 15(13): 3611-3618, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38530095

ABSTRACT

Further improving the activity and selectivity of photocatalytic CO2 reduction remains a challenge. Herein, we propose a new strategy for synergistically promoting photocatalytic CO2 reduction by combining two-dimensional (2D) ferroelectric polarization and single-atom catalysis. Our calculations showed that the ferroelectric polarization of CuBiP2Se6 provides the internal driving force for the separation and migration of photogenerated carriers, which provides a prerequisite for enhancing the photocatalytic efficiency. In addition, the introduction of single Ag atoms can act as an electron reservoir to significantly modify the bonding configurations on the surface through proper static electron transfer, thus effectively promoting the adsorption and activation of CO2 molecules. More importantly, we found that switching the ferroelectric polarization can synergistically optimize the limiting potential as well as control the final products. This study provides a new approach for enhancing the catalytic activity and selectivity of photocatalytic CO2 reduction.

5.
J Phys Chem Lett ; 15(10): 2867-2875, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38446846

ABSTRACT

The rapid recombination of photogenerated carriers heavily restricts the photocatalytic efficiency. Here, we propose a new strategy to improve catalytic efficiency based on the ferroelectric van der Waals heterostructure (CuBiP2Se6/C2N). Combining density functional theory and the nonadiabatic molecular dynamics (NAMD) method, we have systematically analyzed the ground-state properties and carrier dynamics images in the CuBiP2Se6/C2N heterostructure. Our calculations showed that the ferroelectric polarization of CuBiP2Se6 provides the internal driving force for the photogenerated carriers separation. NAMD results demonstrate that the excited-state carrier transfer and recombination processes in the CuBiP2Se6/C2N are consistent with a type II mechanism. Meanwhile, constructing the ferroelectric heterostructure can effectively prolong the carrier lifetime, from ∼65.98 to ∼124.54 ps. Moreover, the high quantum efficiency and tunable band edge positions mean that the CuBiP2Se6/C2N heterostructure is an excellent potential candidate material for photocatalytic water splitting.

6.
Small ; 20(27): e2310530, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38317526

ABSTRACT

Rechargeable aprotic Li-CO2 batteries have aroused worldwide interest owing to their environmentally friendly CO2 fixation ability and ultra-high specific energy density. However, its practical applications are impeded by the sluggish reaction kinetics and discharge product accumulation during cycling. Herein, a flexible composite electrode comprising CoSe2 nanoparticles embedded in 3D carbonized melamine foam (CoSe2/CMF) for Li-CO2 batteries is reported. The abundant CoSe2 clusters can not only facilitate CO2 reduction/evolution kinetics but also serve as Li2CO3 nucleation sites for homogeneous discharge product growth. The CoSe2/CMF-based Li-CO2 battery exhibits a large initial discharge capacity as high as 5.62 mAh cm-2 at 0.05 mA cm-2, a remarkably small voltage gap of 0.72 V, and an ultrahigh energy efficiency of 85.9% at 0.01 mA cm-2, surpassing most of the noble metal-based catalysts. Meanwhile, the battery demonstrates excellent cycling stability of 1620 h (162 cycles) at 0.02 mA cm-2 with an average overpotential of 0.98 V and energy efficiency of 85.4%. Theoretical investigations suggest that this outstanding performance is attributed to the suitable CO2/Li adsorption and low Li2CO3 decomposition energy. Moreover, flexible Li-CO2 pouch cell with CoSe2/CMF cathode displays stable power output under different bending deformations, showing promising potential in wearable electronic devices.

7.
J Phys Chem Lett ; 14(43): 9604-9611, 2023 Nov 02.
Article in English | MEDLINE | ID: mdl-37862673

ABSTRACT

Doping of zinc oxide (ZnO) with manganese (Mn) tunes midbandgap states of ZnO to enhance its optical properties and makes it into an efficient photoactive material for photoelectrochemical water splitting, waste removal from water, and other applications. We demonstrate that ZnO modified with 1 at. % Mn exhibits the best performance, as rationalized by experimental, structural, and optical characterization and theoretical analysis. ZnO doped with the optimal Mn content possesses improved light absorption in the visible region and minimizes charge carrier recombination. The doping is substitutional and creates midgap states near the valence band. Mn atoms break localized charge traps at oxygen vacancy sites and eliminate photoluminescence peaks associated with oxygen vacancies. The optimal performance of Mn-modified ZnO is demonstrated with the photodegradation of Congo red and photoelectrochemical water splitting.

8.
J Phys Chem Lett ; 14(37): 8289-8295, 2023 Sep 21.
Article in English | MEDLINE | ID: mdl-37681642

ABSTRACT

Nonadiabatic molecular dynamics provides essential insights into excited-state processes, but it is computationally intense and simplifications are needed. The classical path approximation provides critical savings. Still, long heating and equilibration steps are required. We demonstrate that practical results can be obtained with short, partially equilibrated ab initio trajectories. Once the system's structure is adequate and essential fluctuations are sampled, the nonadiabatic Hamiltonian can be constructed. Local structures require only 1-2 ps trajectories, as demonstrated with point defects in metal halide perovskites. Short trajectories represent anharmonic motions common in defective structures, an essential improvement over the harmonic approximation around the optimized geometry. Glassy systems, such as grain boundaries, require different simulation protocols, e.g., involving machine learning force fields. 10-fold shorter trajectories generate 10-20% time scale errors, which are acceptable, given experimental uncertainties and other approximations. The practical NAMD protocol enables fast screening of excited-state dynamics for rapid exploration of new materials.

9.
J Phys Chem Lett ; 14(26): 6028-6036, 2023 Jul 06.
Article in English | MEDLINE | ID: mdl-37352556

ABSTRACT

Metal halide perovskites (MHPs) have attracted attention because of their high optoelectronic performance that is fundamentally rooted in the unusual properties of MHP defects. By developing an ab initio-based machine-learning force field, we sample the structural dynamics of MHPs on a nanosecond time scale and show that halide vacancies create midgap trap states in the MHP bulk but not on a surface. Deep traps result from Pb-Pb dimers that can form across the vacancy in only the bulk. The required shortening of the Pb-Pb distance by nearly 3 Å is facilitated by either charge trapping or 50 ps thermal fluctuations. The large-scale structural deformations are possible because MHPs are soft. Halide vacancies on the MHP surface create no deep traps but separate electrons from holes, keeping the charges mobile. This is particularly favorable for MHP quantum dots, which do not require sophisticated surface passivation to emit light and blink less than quantum dots formed from traditional inorganic semiconductors.

10.
J Phys Chem Lett ; 14(18): 4134-4141, 2023 May 11.
Article in English | MEDLINE | ID: mdl-37103474

ABSTRACT

Doped ZnO nanostructures have shown great potential for solar energy applications. Considering the compatible ionic radius, Mg atoms can be doped into ZnO at different concentrations. The current work reports a combined experimental and density functional theory study on the influence of the Mg dopant concentration on ZnO performance simultaneously for photocatalytic dye removal and photoelectrochemical water splitting. Among all the samples, Mg(3)-ZnO (3 at. % Mg) exhibits superior sunlight-driven photocatalytic performance. The optimal Mg-ZnO shows an 8-fold increase in the photocatalytic activity compared to the pristine ZnO. Likewise, the most active photocatalyst shows high photoelectrochemical performance with a photocurrent response of 1.54 mA at the lowest onset potential, 11 times higher than the pristine ZnO. Tuning of the Mg content results in the generation of extra charge carriers and a reduced recombination rate, which are the crucial factors responsible for enhanced photocatalytic and photoelectrochemical performance.

11.
Adv Sci (Weinh) ; 10(7): e2205959, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36646507

ABSTRACT

Rechargeable Li-CO2 battery represents a sustainable technology by virtue of CO2 recyclability and energy storage capability. Unfortunately, the sluggish mass transport and electron transfer in bulky high-crystalline discharge product of Li2 CO3 , severely hinder its practical capacity and rechargeability. Herein, a heterostructure of isolated metalloid Te atomic cluster anchored on N-doped carbon nanosheets is designed (TeAC @NCNS) as a metal-free cathode for Li-CO2 battery. X-ray absorption spectroscopy analysis demonstrates that the abundant and dispersed Te active centers can be stabilized by C atoms in form of the covalent bond. The fabricated battery shows an unprecedented full-discharge capacity of 28.35 mAh cm-2 at 0.05 mA cm-2 and long-term cycle life of up to 1000 h even at a high cut-off capacity of 1 mAh cm-2 . A series of ex situ characterizations combined with theoretical calculations demonstrate that the abundant Te atomic clusters acting as active centers can drive the electron redistribution of carbonate via forming TeO bonds, giving rise to poor-crystalline Li2 CO3 film during the discharge process. Moreover, the efficient electron transfer between the Te centers and intermediate species is energetically beneficial for nucleation and accelerates the decomposition of Li2 CO3 on the TeAC @NCNS during the discharge/charge process.

12.
Nanoscale ; 15(1): 285-293, 2022 Dec 22.
Article in English | MEDLINE | ID: mdl-36484318

ABSTRACT

Grain boundaries (GBs) in perovskite solar cells and optoelectronic devices are widely regarded as detrimental defects that accelerate charge and energy losses through nonradiative carrier trapping and recombination, but the mechanism is still under debate owing to the diversity of GB configurations and behaviors. We combine ab initio electronic structure and machine learning force field to investigate evolution of the geometric and electronic structure of a CsPbBr3 GB on a nanosecond timescale, which is comparable with the carrier recombination time. We demonstrate that the GB slides spontaneously within a few picoseconds increasing the band gap. Subsequent structural oscillations dynamically produce midgap trap states through Pb-Pb interactions across the GB. After several hundred picoseconds, structural distortions start to occur, increasing the occurrence of deep midgap states. We identify a distinct correlation of the average Pb-Pb distance and fluctuations in the ion coordination numbers with the appearance of the midgap states. Suppressing GB distortions through annealing and breaking up Pb-Pb dimers by passivation can efficiently alleviate the detrimental effects of GBs in perovskites. The study provides new insights into passivation of the detrimental GB defects, and demonstrates that structural and charge carrier dynamics in perovskites are intimately coupled.

13.
ACS Appl Mater Interfaces ; 14(50): 55753-55761, 2022 Dec 21.
Article in English | MEDLINE | ID: mdl-36475599

ABSTRACT

All-inorganic perovskites are promising candidates for solar energy and optoelectronic applications, despite their polycrystalline nature with a large density of grain boundaries (GBs) due to facile solution-processed fabrication. GBs exhibit complex atomistic structures undergoing slow rearrangements. By studying evolution of the Σ5(210) CsPbBr3 GB on a nanosecond time scale, comparable to charge carrier lifetimes, we demonstrate that GB deformations appear every ∼100 ps and increase significantly the probability of deep charge traps. However, the deep traps form only transiently for a few hundred femtoseconds. In contrast, shallow traps appear continuously at the GB. Shallow traps are localized in the GB layer, while deep traps are in a sublayer, which is still distorted from the pristine structure and can be jammed in unfavorable conformations. The GB electronic properties correlate with bond angles, with notable exception of the Br-Br distance, which provides a signature of halide migration along GBs. The transient nature of trap states and localization of electrons and holes at different parts of GBs indicate that charge carrier lifetimes should be long. At the same time, charge mobility can be reduced. The complex, multiscale evolution of geometric and electronic structures of GBs rationalize the contradictory statements made in the literature regarding both benign and detrimental roles of GBs in perovskite performance and provide new atomistic insights into perovskite properties.

14.
J Phys Chem Lett ; 13(49): 11375-11382, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36454707

ABSTRACT

Using time-domain density functional theory combined with nonadiabatic (NA) molecular dynamics, we demonstrate that composition engineering of the X-site anions has a strong influence on the nonradiative electron-hole recombination and thermodynamic stability of cesium-based all-inorganic perovskites. Partial substitution of iodine(I) with bromine (Br) and acetate (Ac) anions reduces the NA electron-vibrational coupling by minimizing the overlap between the electron and hole wave functions and suppressing atomic fluctuations. The doping also widens the energy gap to further reduce the NA coupling and to enhance the open-circuit voltage of perovskite solar cells. These factors increase the charge carrier lifetime by an order of magnitude and improve structural stability in the series CsPbI1.88BrAc0.12 > CsPbI2Br > CsPbI3. The fundamental atomistic insights into the influence of anion doping on the photophysical properties of the all-inorganic lead halide perovskites guide the design of efficient optoelectronic materials.

15.
Beilstein J Nanotechnol ; 13: 1418-1431, 2022.
Article in English | MEDLINE | ID: mdl-36540701

ABSTRACT

We present a quantitative study of the density of states (DOS) in SF bilayers (where S is a bulk superconductor and F is a ferromagnetic metal) in the diffusive limit. We solve the quasiclassical Usadel equations in the structure considering the presence of magnetic and spin-orbit scattering. For practical reasons, we propose the analytical solution for the density of states in SF bilayers in the case of a thin ferromagnet and low transparency of the SF interface. This solution is confirmed by numerical calculations using a self-consistent two-step iterative method. The behavior of DOS dependencies on magnetic and spin-orbit scattering times is discussed.

16.
J Phys Chem Lett ; 13(43): 10114-10119, 2022 Nov 03.
Article in English | MEDLINE | ID: mdl-36269349

ABSTRACT

BiScO3 compound was obtained in the form of dense ceramic with a perovskite-type structure, and its complex characterization was determined for the first time. The corresponding synthesis procedure is described in detail. It is demonstrated that the temperature region of the phase stability at atmospheric pressure lies at T < 700 °C (973 K). It is shown that the crystal structure of the BiScO3 ceramic is centrosymmetric. Dielectric measurements of the synthesized sample performed at frequencies 25 Hz to 1 MHz and at temperatures 10-340 K show no changes typical for phase transition. Room-temperature infrared (30-15600 cm-1) and Raman (90-2000 cm-1) spectra of the prepared BiScO3 ceramic are measured, and information on the parameters of phonon resonances is obtained. The number of infrared modes exceeds that predicted by the factor group analysis of the noncentrosymmetric space group C2. The reason for selection rules violation can be associated with the disorder of the crystal structure and local distortions induced by the lone pair of electrons of Bi3+.

17.
J Am Chem Soc ; 144(41): 19137-19149, 2022 Oct 19.
Article in English | MEDLINE | ID: mdl-36206144

ABSTRACT

Solar cells and optoelectronic devices are exposed to heat that degrades performance. Therefore, elucidating temperature-dependent charge carrier dynamics is essential for device optimization. Charge carrier lifetimes decrease with temperature in conventional semiconductors. The opposite, anomalous trend is observed in some experiments performed with MAPbI3 (MA = CH3NH3+) and other metal halide perovskites. Using ab initio quantum dynamics simulation, we establish the atomic mechanisms responsible for nonradiative electron-hole recombination in orthorhombic-, tetragonal-, and cubic MAPbI3. We demonstrate that structural disorder arising from the phase transitions is as important as the disorder due to heating in the same phase. The carrier lifetimes grow both with increasing temperature in the same phase and upon transition to the higher-temperature phases. The increased lifetime is rationalized by structural disorder that induces partial charge localization, decreases nonadiabatic coupling, and shortens quantum coherence. Inelastic and elastic electron-vibrational interactions exhibit opposite dependence on temperature and phase. The partial disorder and localization arise from thermal motions of both the inorganic lattice and the organic cations and depend significantly on the phase. The structural deformations induced by thermal fluctuations and phase transitions are on the same order as deformations induced by defects, and hence, thermal disorder plays a very important role. Since charge localization increases carrier lifetimes but inhibits transport, an optimal regime maximizing carrier diffusion can be designed, depending on phase, temperature, material morphology, and device architecture. The atomistic mechanisms responsible for the enhanced carrier lifetimes at elevated temperatures provide guidelines for the design of improved solar energy and optoelectronic materials.

18.
Commun Biol ; 5(1): 457, 2022 05 12.
Article in English | MEDLINE | ID: mdl-35552496

ABSTRACT

Transcriptional pausing is crucial for the timely expression of genetic information. Biochemical methods quantify the half-life of paused RNA polymerase (RNAP) by monitoring restarting complexes across time. However, this approach may produce apparent half-lives that are longer than true pause escape rates in biological contexts where multiple consecutive pause sites are present. We show here that the 6-nitropiperonyloxymethyl (NPOM) photolabile group provides an approach to monitor transcriptional pausing in biological systems containing multiple pause sites. We validate our approach using the well-studied his pause and show that an upstream RNA sequence modulates the pause half-life. NPOM was also used to study a transcriptional region within the Escherichia coli thiC riboswitch containing multiple consecutive pause sites. We find that an RNA hairpin structure located upstream to the region affects the half-life of the 5' most proximal pause site-but not of the 3' pause site-in contrast to results obtained using conventional approaches not preventing asynchronous transcription. Our results show that NPOM is a powerful tool to study transcription elongation dynamics within biologically complex systems.


Subject(s)
Escherichia coli Proteins , Transcription, Genetic , DNA-Directed RNA Polymerases/chemistry , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Nucleic Acid Conformation
19.
J Phys Chem Lett ; 13(16): 3645-3651, 2022 Apr 28.
Article in English | MEDLINE | ID: mdl-35435697

ABSTRACT

Lead-free double perovskites hold promise for stable and environmentally benign solar cells; however, they exhibit low efficiencies because defects act as charge recombination centers. Identifying trap-assisted loss mechanisms and developing defect passivation strategies constitute an urgent goal. Applying unsupervised machine learning to density functional theory and nonadiabatic molecular dynamics, we demonstrate that negatively charged Br vacancies in Cs2AgBiBr6 create deep hole traps through charge redistribution between the adjacent Ag and Bi atoms. Vacancy electrons are first accepted by Bi and then shared with Ag, as the trap transforms from shallow to deep. Subsequent charge losses are promoted by Ag and Bi motions perpendicular to rather than along the Ag-Bi axis, as can be expected. In contrast, charge recombination in pristine Cs2AgBiBr6 correlates most with displacements of Cs atoms and Br-Br-Br angles. Doping with In to replace Ag at the vacancy maintains the electrons at Bi and keeps the trap shallow.

20.
J Chem Phys ; 156(9): 094702, 2022 Mar 07.
Article in English | MEDLINE | ID: mdl-35259894

ABSTRACT

Graphitic carbon nitride (GCN) has attracted significant attention due to its excellent performance in photocatalytic applications. Non-metal doping of GCN has been widely used to improve the efficiency of the material as a photocatalyst. Using a combination of time-domain density functional theory with nonadiabatic molecular dynamics, we study the charge carrier dynamics in oxygen and boron doped GCN systems. The reported simulations provide a detailed time-domain mechanistic description of the charge separation and recombination processes that are of fundamental importance while evaluating the photovoltaic and photocatalytic performance of the material. The appearance of smaller energy gaps due to the presence of dopant states improves the visible light absorption range of the doped systems. At the same time, the nonradiative lifetimes are shortened in the doped systems as compared to the pristine GCN. In the case of boron doped at a carbon (B-C-GCN), the charge recombination time is very long as compared to the other two doped systems owing to the smaller electron-phonon coupling strength between the valence band maximum and the trap state. The results suggest B-C-GCN as the most suitable candidate among three doped systems studied in this work for applications in photocatalysis. This work sheds light into the influence of dopants on quantum dynamics processes that govern GCN performance and, thus, guides toward building high-performance devices in photocatalysis.

SELECTION OF CITATIONS
SEARCH DETAIL
...