Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Colloids Surf B Biointerfaces ; 234: 113745, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38241890

ABSTRACT

Recent efforts have focused on developing improved drug delivery systems with enhanced therapeutic efficacy and minimal side effects. Micelles, self-assembled from amphiphilic block copolymers in aqueous solutions, have gained considerable attention for drug delivery. However, there is a need to further enhance their efficiency. These micelles offer benefits like biodegradability, biocompatibility, sustained drug release, and improved patient compliance. Yet, researchers must address stability issues and reduce toxicity. Nanoscale self-assembled structures have shown promise as efficient drug carriers, offering an alternative to conventional methods. Fine-tuning at the monomeric and molecular levels, along with structural modifications, is crucial for optimal drug release profiles. Various strategies, such as entrapping hydrophobic drugs and using polyethylene oxide diblock copolymer micelles to resist protein adsorption and cellular adhesion, protect the hydrophobic core from degradation. The polyethylene oxide corona also provides stealth properties, prolonging blood circulation for extended drug administration. Amphiphilic copolymers are attractive for drug delivery due to their adjustable properties, allowing control over micelle size and morphology. Emerging tools promise complex and multifunctional platforms. This article summarizes about the challenges as far as the use of micelles is concerned, including optimizing performance, rigorous pre-clinical and clinical research, and suggests further improvement for drug delivery efficacy.


Subject(s)
Drug Delivery Systems , Micelles , Humans , Polyethylene Glycols/chemistry , Drug Carriers/chemistry , Polymers/chemistry
2.
Biotechnol Appl Biochem ; 70(5): 1690-1706, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37042496

ABSTRACT

Phosphorous actively participates in numerous metabolic and regulatory activities of almost all living organisms including animals and humans. Therefore, it is considered as an essential macronutrient required supporting their proper growth. On contrary, phytic acid (PA), an antinutritional substance, is widely known for its strong affinity to chelate essential mineral ions including PO4 3- , Ca2+ , Fe2+ , Mg2+ , and Zn2+ . Being one the major reservoir of PO4 3- ions, PA has great potential to bind PO4 3- ions in diverse range of foods. Once combined with P, PA transforms into an undigested and insoluble complex namely phytate. Produced phytate leads to a notable reduction in the bioavailability of P due to negligible activity of phytases in monogastric animals and humans. This highlights the importance and consequent need of enhancement of phytase level in these life forms. Interestingly, phytases, catalyzing the breakdown of phytate complex and recycling the phosphate into ecosystem to its available form, have naturally been reported in a variety of plants and microorganisms over past few decades. In pursuit of a reliable solution, the focus of this review is to explore the keynote potential of bacterial phytases for sustainable management of phosphorous via efficient utilization of soil phytate. The core of the review covers detailed discussion on bacterial phytases along with their widely reported applications viz. biofertilizers, phosphorus acquisition, and plant growth promotion. Moreover, meticulous description on fermentation-based strategies and future trends on bacterial phytases have also been included.


Subject(s)
6-Phytase , Phytic Acid , Humans , Animals , Phytic Acid/pharmacology , Phytic Acid/metabolism , 6-Phytase/metabolism , Ecosystem , Phosphorus , Phosphates
3.
Prep Biochem Biotechnol ; 50(9): 865-873, 2020.
Article in English | MEDLINE | ID: mdl-32393146

ABSTRACT

Biosynthesis of silver nanoparticles (AgNPs) using plant extracts has become a promising alternative to the conventional chemical synthesis approach. In this study, cost-effective synthesis of AgNPs was attempted using leaves extract of Litchi chinensis. Bio-reduction reaction for the synthesis of NPs was checked by confirming the presence of AgNPs in solution by UV-vis spectrophotometry and with further characterization by fourier-transform infrared spectroscopy (FTIR) and transmission electron microscopy (TEM). Surface plasmon resonance (SPR) band showed absorption peak at 422 nm indicating the formation of AgNPs, and FTIR spectra confirmed the presence of biological molecules involved in AgNPs synthesis. TEM analysis revealed the spherical shape of AgNPs with particle size distribution in a range of 5-15 nm. Further, the biosynthesized AgNPs showed significant bactericidal and sporicidal activity against model spore former Bacillus subtilis. AgNPs at concentrations ranging from 25 to 100 µg/mL showed bactericidal activity with inhibition zone ranging from 4-19 mm and sporicidal activity at 100-200 µg/mL in a range of 4.46-61.6% with an exposure time of 2-8 h. These findings exhibit distinctive potential of biogenic AgNPs for their efficient use in developing novel bactericidal and sporicidal agent against spore forming bacilli.


Subject(s)
Anti-Bacterial Agents/chemistry , Green Chemistry Technology/methods , Litchi/chemistry , Metal Nanoparticles/chemistry , Silver/chemistry , Anti-Bacterial Agents/pharmacology , Bacillus subtilis/drug effects , Metal Nanoparticles/ultrastructure , Plant Leaves/chemistry , Silver/pharmacology , Spores, Bacterial/drug effects
4.
3 Biotech ; 7(1): 42, 2017 May.
Article in English | MEDLINE | ID: mdl-28444586

ABSTRACT

Phytic acid is a main reservoir of phosphorous (P) in plants and contributes to about 80% of the total P in cereal seeds. However, it is well known to possess anti-nutritional behavior. Because it has strong affinity to chelate divalent ions e.g. calcium, magnesium, and especially with iron and zinc. Therefore, it is extremely poor as a dietary source of P. To enhance bio-availability of micronutrients, an enzyme namely phytase is known to hydrolyze phytic acid. Unfortunately, phytase is not produced in the stomach of monogastric animals and humans. Thus, the presence of phytic acid in cereal foods has become major concern about the deficiency of essential micronutrients in developing countries. To address this problem, various types of phytase have been isolated, purified and characterized from different varieties of cereal till date. Therefore, the present article discusses about catalytic properties, gene regulation of such cereal phytases and their importance in ensuring food safety.

5.
Environ Monit Assess ; 177(1-4): 35-8, 2011 Jun.
Article in English | MEDLINE | ID: mdl-20665110

ABSTRACT

Polycyclic aromatic hydrocarbons (PAHs) are a class of environmental pollutants generated from incomplete combustion of organic materials. PAHs in tea have been studied for five locally available brands. Six to seven PAHs from list of 16 priority pollutants (US EPA) were found to be present in samples of various brands of tea. Benzo[a]pyrene (2A: probable human carcinogen) was found in two samples, and naphthalene (2B: possible human carcinogen) was found in all the tea samples.


Subject(s)
Environmental Pollutants/analysis , Food Contamination/analysis , Polycyclic Aromatic Hydrocarbons/analysis , Tea/chemistry , Benzo(a)pyrene/analysis , Chromatography, Gas , Chromatography, High Pressure Liquid , Food Contamination/statistics & numerical data
SELECTION OF CITATIONS
SEARCH DETAIL
...