Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Biomed Mater Res ; 53(3): 235-43, 2000.
Article in English | MEDLINE | ID: mdl-10813763

ABSTRACT

Fine elastomeric sutures intended for cardiovascular surgery can exhibit "stick-slip" behavior as they are pulled through tissue; the resulting oscillatory force can damage delicate tissue or cause sutures to snap. To eliminate this undesirable effect, sutures were surface-modified using a radiofrequency glow discharge in a vapor of either hexamethyldisiloxane or hexamethyldisilazane, to produce a thin polymeric coating on the suture. The same coatings were also deposited onto aluminized tape to facilitate their characterization by measurement of air/water contact angles and by X-ray photoelectron spectroscopy. Coatings from both monomers were found to be very hydrophobic. The hexamethyldisiloxane glow discharge coatings underwent negligible oxidation when stored in air, and thus remained stable over a shelf-life period akin to what may be required of sutures. The hexamethyldisilazane glow discharge coatings, in contrast, incorporated substantial amounts of oxygen over a 3-month period. The coatings did not measurably alter the tensile properties of the sutures. The frictional properties of coated sutures were assessed by measuring the dynamic friction between the suture and ovine myocardium. Both coatings were effective in removing the inherent stick-slip behavior of polybutester sutures in this model. The coatings remained intact after several passes and proved to be robust and efficacious under various strain regimes.


Subject(s)
Biocompatible Materials , Sutures , Animals , Humans , Surface Properties , Thoracic Surgical Procedures/instrumentation
2.
J Biomater Sci Polym Ed ; 7(7): 601-22, 1995.
Article in English | MEDLINE | ID: mdl-8924426

ABSTRACT

Optimization of strategies for the covalent attachment of proteins onto polymer surfaces requires the development of analytical methods which can differentiate between proteins that are covalently attached and those that are non-covalently bound (physisorbed). We probed for the surface density of reactive amine, carbonyl, and hydrazide groups using solution phase derivatization reactions to mimic and explore protein immobilization reaction strategies. Labeling compounds investigated were fluorescein derivatives, which were quantified by adsorption spectroscopy, and fluorinated phenyl compounds which were quantified by XPS. Control experiments consisted of performing the same labeling reactions using surfaces without reactive groups, or immersing the polymer surface into the labeling solution after blocking the reactive group of the labeling compound by a covalent reaction in solution. We always found non-negligible contributions arising from physisorption of the derivatization labels. Multiple control surfaces and a novel 'crossover derivatization-XPS' method were studied with the aim of improving compensation for physisorption. Our documentation of surprisingly large physisorption components even for small molecule labels, together with the known propensity of proteins to adsorb onto polymers, suggests caution in quantitative analysis of surface groups by derivatization, and in interpreting covalent protein immobilizations onto polymeric surfaces.


Subject(s)
Proteins/metabolism , Adsorption , Aldehydes/chemistry , Amines/metabolism , Biocompatible Materials/metabolism , Carboxylic Acids/chemistry , Carboxylic Acids/metabolism , Fluorescein , Fluoresceins/chemistry , Fluorescent Dyes , Hydrazines/metabolism , Polyethylenes/chemistry , Polymers , Polypropylenes/chemistry , Protein Binding , Proteins/chemistry , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...