Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
Pharmaceuticals (Basel) ; 7(4): 366-91, 2014 Mar 25.
Article in English | MEDLINE | ID: mdl-24670666

ABSTRACT

A new class of antimicrobial agents with lower rates of resistance and different targets is urgently needed because of the rapidly increasing resistance to classical antibiotics. Amphipathic cationic α-helical antimicrobial peptides (AMPs) represent such a class of compounds. In our previous studies, using a 26-residue de novo designed antimicrobial peptide, we proposed the concept of "specificity determinant(s)": positively charged residue(s) in the center of the non-polar face of AMPs that could decrease hemolytic activity/toxicity but increase or maintain the same level of antimicrobial activity to increase dramatically the therapeutic index. In the current study, we used d-enantiomers of two AMPs, Piscidin 1 isolated from fish and dermaseptin S4 isolated from frog. We substituted different positions in the center of the hydrophobic face with one or two lysine residue(s) (one or two "specificity determinant(s)"). This simple modification not only maintained or improved antimicrobial activity against Gram-negative pathogens Acinetobacter baumannii (11 strains) and Pseudomonas aeruginosa (6 strains), but also dramatically decreased hemolytic activity of human red blood cells, as predicted. Therapeutic indices improved by 55-fold and 730-fold for piscidin 1 (I9K) and dermaseptin S4 (L7K, A14K), respectively, against A. baumannii. Similarly, the therapeutic indices improved 32-fold and 980-fold for piscidin 1 (I9K) and dermaseptin S4 (L7K, A14K), respectively, against P. aeruginosa.

2.
mBio ; 5(1): e01010-13, 2014 Feb 04.
Article in English | MEDLINE | ID: mdl-24496793

ABSTRACT

UNLABELLED: Pseudomonas aeruginosa strains of non-cystic fibrosis (non-CF) origin do not produce significant amounts of extracellular alginate and are nonmucoid. In CF, such isolates can become mucoid through mutation of one of the genes (mucA, mucB, mucC, or mucD) that produce regulatory factors that sequester AlgU, required for increased expression of alginate genes. Mutation of the muc genes in the nonmucoid PAO1, PA14, PAKS-1, and Ps388 strains led to increased levels of extracellular alginate and an obvious mucoid phenotype, but only under iron-limiting growth conditions (≤5 µM), not under iron-replete conditions (≥10 µM). In contrast, >50% of P. aeruginosa isolates from chronic CF pulmonary infections expressed increased levels of alginate and mucoidy both under iron-limiting and iron-replete conditions (i.e., iron-constitutive phenotype). No single iron regulatory factor (e.g., Fur, PvdS) was associated with this loss of iron-regulated alginate expression and mucoidy in these CF isolates. However, the loss of only pyoverdine production, or its uptake, abrogated the ability of P. aeruginosa to produce a robust biofilm that represents the Psl-type of biofilm. In contrast, we show that mutation of the pyoverdine and pyochelin biosynthesis genes and the pyoverdine receptor (FpvA) lead to iron-constitutive expression of the key alginate biosynthesis gene, algD, and an explicitly mucoid phenotype in both iron-limiting and iron-replete conditions. These data indicate that alginate production and mucoidy, in contrast to other types of biofilms produced by P. aeruginosa, are substantially enhanced under iron limitation. These results also have compelling implications in relation to the use of iron chelators in the treatment of P. aeruginosa CF infections. IMPORTANCE: Pseudomonas aeruginosa is a leading model for the investigation of biofilms. While data have been generated about the role of iron in alginate-independent (Psl/Pel) biofilm development, there is a paucity of data regarding the role of iron in alginate production and its associated mucoid phenotype. We demonstrate that biologically relevant levels of iron that exist in the airway mucus of cystic fibrosis (CF) patients have a substantial influence on production of alginate and the overt mucoid phenotype, pathognomonic of P. aeruginosa infections in CF. Mucoid mutants of non-CF P. aeruginosa isolates are mucoid only under iron limitation and do not express increased levels of alginate under iron-replete growth conditions. However, a significant number of long-term CF isolates lost their iron-regulated expression of increased alginate production and mucoidy and became iron constitutive for these properties. In contrast to the formation of Psl-type biofilms, increasing iron limitation ultimately leads to an iron-constitutive expression of alginate and mucoidy.


Subject(s)
Biofilms/growth & development , Gene Expression Regulation, Bacterial/drug effects , Iron/metabolism , Polysaccharides, Bacterial/biosynthesis , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/genetics , Alginates , Glucuronic Acid/biosynthesis , Hexuronic Acids , Metabolic Networks and Pathways/genetics , Mutation , Pseudomonas aeruginosa/physiology
3.
Pathog Dis ; 70(3): 307-20, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24436170

ABSTRACT

Pseudomonas aeruginosa is a Gram-negative opportunistic bacterial pathogen that is refractory to a variety of current antimicrobial therapeutic regimens. Complicating treatment for such infections is the ability of P. aeruginosa to form biofilms, as well as several innate and acquired resistance mechanisms. Previous studies suggest iron plays a role in resistance to antimicrobial therapy, including the efficacy of an FDA-approved iron chelator, deferasirox (DSX), or Gallium, an iron analog, in potentiating antibiotic-dependent killing of P. aeruginosa biofilms. Here, we show that iron-replete conditions enhance resistance of P. aeruginosa nonbiofilm growth against tobramycin and tigecycline. Interestingly, the mechanism of iron-enhanced resistance to each of these antibiotics is distinct. Whereas pyoverdine-mediated iron uptake is important for optimal resistance to tigecycline, it does not enhance tobramycin resistance. In contrast, heme supplementation results in increased tobramycin resistance, while having no significant effect on tigecycline resistance. Thus, nonsiderophore bound iron plays an important role in resistance to tobramycin, while pyoverdine increases the ability of P. aeruginosa to resist tigecycline treatment. Lastly, we show that iron increases the minimal concentration of tobramycin, but not tigecycline, required to eradicate P. aeruginosa biofilms. Moreover, iron depletion blocks the previous observed induction of biofilm formation by subinhibitory concentrations of tobramycin, suggesting iron and tobramycin signal through overlapping regulatory pathways to affect biofilm formation. These data further support the role of iron in P. aeruginosa antibiotic resistance, providing yet another compelling case for targeting iron acquisition for future antimicrobial drug development.


Subject(s)
Anti-Bacterial Agents/pharmacology , Biofilms/growth & development , Drug Resistance, Bacterial , Iron/metabolism , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/physiology , Anaerobiosis , Cation Transport Proteins/metabolism , Heme/metabolism , Iron Chelating Agents/pharmacology , Minocycline/analogs & derivatives , Minocycline/pharmacology , Pseudomonas Infections/microbiology , Siderophores/metabolism , Tigecycline , Tobramycin/pharmacology
4.
Chem Phys Lipids ; 166: 12-7, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23253877

ABSTRACT

When giant unilamellar vesicles (GUVs) composed of sphingomyelin, phosphatidylcholine, phosphatidylethanolamine, and cholesterol are treated with PlcHR(2), a phospholipase C/sphingomyelinase from Pseudomonas aeruginosa, the initial stages of lipid hydrolysis do not cause large changes in vesicle morphology (Ibarguren et al., 2011). However, when hydrolysis progresses confocal fluorescence microscopy reveals the formation of lipid aggregates, whose morphology is not compatible with that of bilayers. Smaller vesicles or droplets can also be seen inside the GUV. Our studies indicate that these aggregates or droplets are enriched in the non-lamellar lipid ceramide, an end-product of PlcHR(2) reaction. Moreover, the aggregates/droplets appear enriched in the hydrolytic enzyme PlcHR(2). At a final stage GUVs containing the enzyme-enriched droplets disintegrate and vanish from the microscope field. The observed non-lamellar enzyme-rich structures may be related to intermediates in the process of aggregation and fusion although the experimental design prevents vesicle free diffusion in the aqueous medium, thus actual aggregation or fusion cannot be observed.


Subject(s)
Lipid Bilayers/metabolism , Pseudomonas Infections/microbiology , Pseudomonas aeruginosa/enzymology , Type C Phospholipases/metabolism , Unilamellar Liposomes/metabolism , Ceramides/chemistry , Ceramides/metabolism , Diglycerides/chemistry , Diglycerides/metabolism , Humans , Hydrolysis , Lipid Bilayers/chemistry , Pseudomonas aeruginosa/metabolism , Unilamellar Liposomes/chemistry
5.
J Lipid Res ; 52(4): 635-45, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21252263

ABSTRACT

The binding and early stages of activity of a phospholipase C/sphingomyelinase from Pseudomonas aeruginosa on giant unilamellar vesicles (GUV) have been monitored using fluorescence confocal microscopy. Both the lipids and the enzyme were labeled with specific fluorescent markers. GUV consisted of a mixture of phosphatidylcholine, sphingomyelin, phosphatidylethanolamine, and cholesterol in equimolar ratios, to which 5-10 mol% of the enzyme end-product ceramide and/or diacylglycerol were occasionally added. Morphological examination of the GUV in the presence of enzyme reveals that, although the enzyme diffuses rapidly throughout the observation chamber, detectable enzyme binding appears to be a slow, random process, with new bound-enzyme-containing vesicles appearing for several minutes. Enzyme binding to the vesicles appears to be a cooperative process. After the initial cluster of bound enzyme is detected, further binding and catalytic activity follow rapidly. After the activity has started, the enzyme is not released by repeated washing, suggesting a "scooting" mechanism for the hydrolytic activity. The enzyme preferentially binds the more disordered domains, and, in most cases, the catalytic activity causes the disordering of the other domains. Simultaneously, peanut- or figure-eight-shaped vesicles containing two separate lipid domains become spherical. At a further stage of lipid hydrolysis, lipid aggregates are formed and vesicles disintegrate.


Subject(s)
Sphingomyelin Phosphodiesterase/metabolism , Type C Phospholipases/metabolism , Unilamellar Liposomes/chemistry , Ceramides/chemistry , Cholesterol/chemistry , Diglycerides/chemistry , Microscopy, Confocal , Microscopy, Fluorescence , Pseudomonas aeruginosa/enzymology , Sphingomyelin Phosphodiesterase/chemistry , Type C Phospholipases/chemistry
6.
Chem Biol Drug Des ; 77(4): 225-40, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21219588

ABSTRACT

The rapidly growing problem of increased resistance to classical antibiotics makes the development of new classes of antimicrobial agents with lower rates of resistance urgent. Amphipathic cationic α-helical antimicrobial peptides have been proposed as a potential new class of antimicrobial agents. The goal of this study was to take a broad-spectrum, 26-residue, antimicrobial peptide in the all-D conformation, peptide D1 (K13) with excellent biologic properties and address the question of whether a rational design approach could be used to enhance the biologic properties if the focus was on Gram-negative pathogens only. To test this hypothesis, we used 11 and 6 diverse strains of Acinetobacter baumannii and Pseudomonas aeruginosa, respectively. We optimized the number and location of positively charged residues on the polar face, the number, location, and type of hydrophobe on the non-polar face and varied the number of 'specificity determinants' in the center of the non-polar face from 1 to 2 to develop four new antimicrobial peptides. We demonstrated not only improvements in antimicrobial activity, but also dramatic reductions in hemolytic activity and unprecedented improvements in therapeutic indices. Compared to our original starting peptide D1 (V13), peptide D16 had a 746-fold improvement in hemolytic activity (i.e. decrease), maintained antimicrobial activity, and improved the therapeutic indices by 1305-fold and 895-fold against A. baumannii and P. aeruginosa, respectively. The resulting therapeutic indices for D16 were 3355 and 895 for A. baumannii and P. aeruginosa, respectively. D16 is an ideal candidate for commercialization as a clinical therapeutic to treat Gram-negative bacterial infections.


Subject(s)
Acinetobacter baumannii/drug effects , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Drug Design , Peptides/chemistry , Peptides/pharmacology , Pseudomonas aeruginosa/drug effects , Amino Acid Sequence , Hydrophobic and Hydrophilic Interactions , Inhibitory Concentration 50 , Molecular Sequence Data
7.
Chem Phys Lipids ; 164(1): 78-82, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21073866

ABSTRACT

The activity of phospholipase C/sphingomyelinase HR(2) (PlcHR(2)) from Pseudomonas aeruginosa was characterized on a variety of substrates. The enzyme was assayed on liposomes (large unilamellar vesicles) composed of PC:SM:Ch:X (1:1:1:1; mol ratio) where X could be PE, PS, PG, or CL. Activity was measured directly as disappearance of substrate after TLC lipid separation. Previous studies had suggested that PlcHR(2) was active only on PC or SM. However we found that, of the various phospholipids tested, only PS was not a substrate for PlcHR(2). All others were degraded, in an order of preference PC>SM>CL>PE>PG. PlcHR(2) activity was sensitive to the overall lipid composition of the bilayer, including non-substrate lipids.


Subject(s)
Phospholipids/metabolism , Pseudomonas aeruginosa/enzymology , Sphingomyelin Phosphodiesterase/metabolism , Type C Phospholipases/metabolism , Liposomes/metabolism , Substrate Specificity
8.
Biochim Biophys Acta ; 1798(1): 59-64, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19891956

ABSTRACT

A phospholipase C/sphingomyelinase from Pseudomonas aeruginosa has been assayed on vesicles containing phosphatidylcholine, sphingomyelin, phosphatidylethanolamine and cholesterol at equimolar ratios. The enzyme activity modifies the bilayer chemical composition giving rise to diacylglycerol (DAG) and ceramide (Cer). Assays of enzyme activity, enzyme-induced aggregation and fusion have been performed. Ultrastructural evidence of vesicle fusion at various stages of the process is presented, based on cryo-EM observations. The two enzyme lipidic end-products, DAG and Cer, have opposite effects on the bilayer physical properties; the former abolishes lateral phase separation, while the latter generates a new gel phase [Sot et al., FEBS Lett. 582, 3230-3236 (2008)]. Addition of either DAG, or Cer, or both to the liposome mixture causes an increase in enzyme binding to the bilayers and a decrease in lag time of hydrolysis. These two lipids also have different effects on the enzyme activity, DAG enhancing enzyme-induced vesicle aggregation and fusion, Cer inhibiting the hydrolytic activity. These effects are explained in terms of the different physical properties of the two lipids. DAG increases bilayers fluidity and decreases lateral separation of lipids, thus increasing enzyme activity and substrate accessibility to the enzyme. Cer has the opposite effect mainly because of its tendency to sequester sphingomyelin, an enzyme substrate, into rigid domains, presumably less accessible to the enzyme.


Subject(s)
Bacterial Proteins/metabolism , Ceramides/metabolism , Diglycerides/metabolism , Pseudomonas aeruginosa/enzymology , Sphingomyelin Phosphodiesterase/metabolism , Type C Phospholipases/metabolism , Algorithms , Cell Membrane/chemistry , Cell Membrane/metabolism , Cell Membrane/ultrastructure , Ceramides/chemistry , Cholesterol/chemistry , Diglycerides/chemistry , Kinetics , Membrane Fusion , Microscopy, Electron, Transmission , Phosphatidylcholines/chemistry , Phosphatidylethanolamines/chemistry , Protein Binding , Sphingomyelins/chemistry , Substrate Specificity , Unilamellar Liposomes/chemistry , Unilamellar Liposomes/metabolism
9.
PLoS Pathog ; 5(5): e1000420, 2009 May.
Article in English | MEDLINE | ID: mdl-19424430

ABSTRACT

The hemolytic phospholipase C (PlcHR) expressed by Pseudomonas aeruginosa is the original member of a Phosphoesterase Superfamily, which includes phosphorylcholine-specific phospholipases C (PC-PLC) produced by frank and opportunistic pathogens. PlcHR, but not all its family members, is also a potent sphingomyelinase (SMase). Data presented herein indicate that picomolar (pM) concentrations of PlcHR are selectively lethal to endothelial cells (EC). An RGD motif of PlcHR contributes to this selectivity. Peptides containing an RGD motif (i.e., GRGDS), but not control peptides (i.e., GDGRS), block the effects of PlcHR on calcium signaling and cytotoxicity to EC. Moreover, RGD variants of PlcHR (e.g., RGE, KGD) are significantly reduced in their binding and toxicity, but retain the enzymatic activity of the wild type PlcHR. PlcHR also inhibits several EC-dependent in vitro assays (i.e., EC migration, EC invasion, and EC tubule formation), which represent key processes involved in angiogenesis (i.e., formation of new blood vessels from existing vasculature). Finally, the impact of PlcHR in an in vivo model of angiogenesis in transgenic zebrafish, and ones treated with an antisense morpholino to knock down a key blood cell regulator, were evaluated because in vitro assays cannot fully represent the complex processes of angiogenesis. As little as 2 ng/embryo of PlcHR was lethal to approximately 50% of EGFP-labeled EC at 6 h after injection of embryos at 48 hpf (hours post-fertilization). An active site mutant of PlcHR (Thr178Ala) exhibited 120-fold reduced inhibitory activity in the EC invasion assay, and 20 ng/embryo elicited no detectable inhibitory activity in the zebrafish model. Taken together, these observations are pertinent to the distinctive vasculitis and poor wound healing associated with P. aeruginosa sepsis and suggest that the potent antiangiogenic properties of PlcHR are worthy of further investigation for the treatment of diseases where angiogenesis contributes pathological conditions (e.g., vascularization of tumors, diabetic retinopathy).


Subject(s)
Angiogenesis Inhibitors/metabolism , Endothelial Cells/metabolism , Neovascularization, Physiologic , Pseudomonas aeruginosa/enzymology , Transferases (Other Substituted Phosphate Groups)/metabolism , Angiogenesis Inhibitors/chemistry , Angiogenesis Inhibitors/pharmacology , Animals , Animals, Genetically Modified , CHO Cells , Calcium Signaling/drug effects , Calcium Signaling/physiology , Cell Movement/drug effects , Cell Movement/physiology , Cricetinae , Cricetulus , Endothelial Cells/drug effects , Fibroblasts/drug effects , Fibroblasts/metabolism , Humans , Mice , Transferases (Other Substituted Phosphate Groups)/chemistry , Transferases (Other Substituted Phosphate Groups)/pharmacology , Umbilical Veins , Zebrafish
11.
Chem Biol Drug Des ; 72(6): 483-95, 2008 Dec.
Article in English | MEDLINE | ID: mdl-19090916

ABSTRACT

We utilized a series of analogs of D-V13K (a 26-residue amphipathic alpha-helical antimicrobial peptide, denoted D1) to compare and contrast the role of hydrophobicity on antifungal and antibacterial activity to the results obtained previously with Pseudomonas aeruginosa strains. Antifungal activity for zygomycota fungi decreased with increasing hydrophobicity (D-V13K/A12L/A20L/A23L, denoted D4, the most hydrophobic analog was sixfold less active than D1, the least hydrophobic analog). In contrast, antifungal activity for ascomycota fungi increased with increasing hydrophobicity (D4, the most hydrophobic analog was fivefold more active than D1). Hemolytic activity is dramatically affected by increasing hydrophobicity with peptide D4 being 286-fold more hemolytic than peptide D1. The therapeutic index for peptide D1 is 1569-fold and 62-fold better for zygomycota fungi and ascomycota fungi, respectively, compared with peptide D4. To reduce the hemolytic activity of peptide D4 and improve/maintain the antifungal activity of D4, we substituted another lysine residue in the center of the non-polar face (V16K) to generate D5 (D-V13K/V16K/A12L/A20L/A23L). This analog D5 decreased hemolytic activity by 13-fold, enhanced antifungal activity to zygomycota fungi by 16-fold and improved the therapeutic index by 201-fold compared with D4 and represents a unique approach to control specificity while maintaining high hydrophobicity in the two hydrophobic segments on the non-polar face of D5.


Subject(s)
Antifungal Agents/chemistry , Antifungal Agents/pharmacology , Antimicrobial Cationic Peptides/chemistry , Antimicrobial Cationic Peptides/pharmacology , Amino Acid Sequence , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Circular Dichroism , Cytokines/metabolism , Drug Design , Fungi/drug effects , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects , Hydrophobic and Hydrophilic Interactions , Microbial Sensitivity Tests , Molecular Conformation , Molecular Sequence Data , Protein Structure, Secondary , Stereoisomerism
12.
J Bacteriol ; 190(11): 4038-49, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18390654

ABSTRACT

Pseudomonas aeruginosa demonstrates type IV pilus-mediated directional twitching motility up a gradient of phosphatidylethanolamine (PE). Only one of four extracellular phospholipases C of P. aeruginosa (i.e., PlcB), while not required for twitching motility per se, is required for twitching-mediated migration up a gradient of PE or phosphatidylcholine. Whether other lipid metabolism genes are associated with this behavior was assessed by analysis of transcription during twitching up a PE gradient in comparison to transcription during twitching in the absence of any externally applied phospholipid. Data support the hypothesis that PE is further degraded and that the long-chain fatty acid (LCFA) moieties of PE are completely metabolized via beta-oxidation and the glyoxylate shunt. It was discovered that P. aeruginosa exhibits twitching-mediated chemotaxis toward unsaturated LCFAs (e.g., oleic acid), but not saturated LCFAs (e.g., stearic acid) of corresponding lengths. Analysis of mutants that are deficient in glyoxylate shunt enzymes, specifically isocitrate lyase (DeltaaceA) and malate synthase (DeltaaceB), suggested that the complete metabolism of LCFAs through this pathway was required for the migration of P. aeruginosa up a gradient of PE or unsaturated LCFAs. At this point, our data suggested that this process should be classified as energy taxis. However, further evaluation of the ability of the DeltaaceA and DeltaaceB mutants to migrate up a gradient of PE or unsaturated LCFAs in the presence of an alternative energy source clearly indicated that metabolism of LCFAs for energy is not required for chemotaxis toward these compounds.


Subject(s)
Chemotaxis/physiology , Fatty Acids/metabolism , Phospholipids/metabolism , Pseudomonas aeruginosa/physiology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bronchoalveolar Lavage Fluid/chemistry , Fatty Acids/chemistry , Fimbriae, Bacterial/physiology , Gene Expression Regulation, Bacterial/physiology , Humans , Molecular Structure , Oligonucleotide Array Sequence Analysis , Phospholipids/chemistry , Pseudomonas aeruginosa/genetics , Transcription, Genetic
13.
Biopolymers ; 90(3): 369-83, 2008.
Article in English | MEDLINE | ID: mdl-18098173

ABSTRACT

In our previous study, we utilized a 26-residue amphipathic alpha-helical antimicrobial peptide L-V13K (Chen et al., Antimicrob Agents Chemother 2007, 51, 1398-1406) as the framework to study the effects of peptide hydrophobicity on the mechanism of its antimicrobial action. In this study, we explored the effects of net charge and the number of positively charged residues on the hydrophilic/polar face of L-V13K on its biological activity (antimicrobial and hemolytic) and biophysical properties (hydrophobicity, amphipathicity, helicity, and peptide self-association). The net charge of V13K analogs at pH 7 varied between -5 and +10 and the number of positively charged residues varied from 1 to 10. The minimal inhibitory concentrations (MIC) against six strains of Pseudomonas aeruginosa as well as other gram-negative and gram-positive bacteria were determined along with the maximal peptide concentration that produces no hemolysis of human red blood cells (MHC). Our results show that the number of positively charged residues on the polar face and net charge are both important for both antimicrobial activity and hemolytic activity. The most dramatic observation is the sharp transition of hemolytic activity on increasing one positive charge on the polar face of V13K i.e., the change from +8 to +9 resulted in greater than 32-fold increase in hemolytic activity (250 microg/ml to <7.8 microg/ml, respectively).


Subject(s)
Anti-Infective Agents/pharmacology , Antimicrobial Cationic Peptides/pharmacology , Amino Acid Sequence , Anti-Infective Agents/chemical synthesis , Anti-Infective Agents/chemistry , Anti-Infective Agents/isolation & purification , Anti-Infective Agents/metabolism , Antimicrobial Cationic Peptides/chemical synthesis , Antimicrobial Cationic Peptides/chemistry , Antimicrobial Cationic Peptides/isolation & purification , Antimicrobial Cationic Peptides/metabolism , Chromatography, High Pressure Liquid , Circular Dichroism , Hemolysis/drug effects , Humans , Hydrophobic and Hydrophilic Interactions , Microbial Sensitivity Tests , Molecular Sequence Data , Protein Structure, Secondary , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/genetics , Temperature
14.
Antimicrob Agents Chemother ; 51(4): 1398-406, 2007 Apr.
Article in English | MEDLINE | ID: mdl-17158938

ABSTRACT

In the present study, the 26-residue amphipathic alpha-helical antimicrobial peptide V13KL (Y. Chen et al., J. Biol. Chem. 2005, 280:12316-12329, 2005) was used as the framework to study the effects of peptide hydrophobicity on the mechanism of action of antimicrobial peptides. Hydrophobicity was systematically decreased or increased by replacing leucine residues with less hydrophobic alanine residues or replacing alanine residues with more hydrophobic leucine residues on the nonpolar face of the helix, respectively. Hydrophobicity of the nonpolar face of the amphipathic helix was demonstrated to correlate with peptide helicity (measured by circular dichroism spectroscopy) and self-associating ability (measured by reversed-phase high-performance liquid chromatography temperature profiling) in aqueous environments. Higher hydrophobicity was correlated with stronger hemolytic activity. In contrast, there was an optimum hydrophobicity window in which high antimicrobial activity could be obtained. Decreased or increased hydrophobicity beyond this window dramatically decreased antimicrobial activity. The decreased antimicrobial activity at high peptide hydrophobicity can be explained by the strong peptide self-association which prevents the peptide from passing through the cell wall in prokaryotic cells, whereas increased peptide self-association had no effect on peptide access to eukaryotic membranes.


Subject(s)
Anti-Bacterial Agents/pharmacology , Hydrophobic and Hydrophilic Interactions , Peptides/chemistry , Peptides/pharmacology , Pseudomonas aeruginosa/drug effects , Anti-Bacterial Agents/chemistry , Anti-Infective Agents/chemical synthesis , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Binding Sites , Drug Design , Protein Structure, Secondary , Structure-Activity Relationship
15.
Chem Biol Drug Des ; 67(2): 162-73, 2006 Feb.
Article in English | MEDLINE | ID: mdl-16492164

ABSTRACT

In our previous study (Chen et al. J Biol Chem 2005, 280:12316-12329), we utilized an alpha-helical antimicrobial peptide V(681) as the framework to study the effects of peptide hydrophobicity, amphipathicity, and helicity on biologic activities where we obtained several V(681) analogs with dramatic improvement in peptide therapeutic indices against gram-negative and gram-positive bacteria. In the present study, the D-enantiomers of three peptides--V(681), V13A(D) and V13K(L) were synthesized to compare biophysical and biologic properties with their enantiomeric isomers. Each D-enantiomer was shown by circular dichroism spectroscopy to be a mirror image of the corresponding L-isomer in benign conditions and in the presence of 50% trifluoroethanol. L- and D-enantiomers exhibited equivalent antimicrobial activities against a diverse group of Pseudomonas aeruginosa clinical isolates, various gram-negative and gram-positive bacteria and a fungus. In addition, L- and D-enantiomeric peptides were equally active in their ability to lyse human red blood cells. The similar activity of L- and D-enantiomeric peptides on prokaryotic or eukaryotic cell membranes suggests that there are no chiral receptors and the cell membrane is the sole target for these peptides. Peptide D-V13K(D) showed significant improvements in the therapeutic indices compared with the parent peptide V(681) by 53-fold against P. aeruginosa strains, 80-fold against gram-negative bacteria, 69-fold against gram-positive bacteria, and 33-fold against Candida albicans. The excellent stability of D-enantiomers to trypsin digestion (no proteolysis by trypsin) compared with the rapid breakdown of the L-enantiomers highlights the advantage of the D-enantiomers and their potential as clinical therapeutics.


Subject(s)
Anti-Infective Agents/pharmacology , Antimicrobial Cationic Peptides/pharmacology , Candida albicans/growth & development , Erythrocyte Membrane/chemistry , Peptides/pharmacology , Pseudomonas aeruginosa/growth & development , Animals , Anti-Infective Agents/chemical synthesis , Anti-Infective Agents/chemistry , Antimicrobial Cationic Peptides/chemical synthesis , Antimicrobial Cationic Peptides/chemistry , Candida albicans/drug effects , Candidiasis/drug therapy , Circular Dichroism/methods , Colony Count, Microbial , Erythrocyte Membrane/drug effects , Hemolysis/drug effects , Humans , Isomerism , Peptides/chemical synthesis , Peptides/chemistry , Protein Structure, Secondary , Pseudomonas Infections/drug therapy , Pseudomonas aeruginosa/drug effects
16.
J Bacteriol ; 188(5): 1762-74, 2006 Mar.
Article in English | MEDLINE | ID: mdl-16484187

ABSTRACT

The secretion of PlcH and its homolog PlcN of Pseudomonas aeruginosa through the inner membrane depends upon a functional twin arginine translocase (Tat) system and a Tat signal sequence. Conserved twin arginine (Arg) residues within the Tat signal sequence consensus motif (S/TRRxFLK) are considered essential for the secretion of Tat substrates, but some exceptions (e.g., Lys and Arg) to the twin Arg residues in this motif have been noted. The roles of all three Arg residues within the PlcH RRRTFLK consensus motif were examined. Data are presented which indicate that Arg-9 and Arg-10 are essential for PlcH secretion across the inner membrane, but the mutation of Arg-8 (e.g., to Ala or Ser) had no observable effect on the localization of PlcH. In the signal sequence of PlcH and in all of its homologs in other bacteria, there are basic amino acid residues (Arg, Lys, and Gln) immediately adjacent to the signal peptidase cleavage site (Ala-X-Ala) that are not seen in Sec-dependent signal sequences. The mutation of these basic residues to Ala caused slightly decreased levels of extracellular PlcH, but normal localization was still observed. Deletion of the entire Tat signal sequence of PlcH not only resulted in the absence of detectable extracellular PlcH activity and protein but also caused a substantial decrease in the detectable level of plcH mRNA. Finally, data are presented which indicate that P. aeruginosa PlcH exhibits cross-species compatibility with the Escherichia coli Tat secretion machinery, but only when the E. coli Tat machinery is expressed in a P. aeruginosa host.


Subject(s)
Bacterial Proteins/physiology , Membrane Transport Proteins/physiology , Pseudomonas aeruginosa/metabolism , Transferases (Other Substituted Phosphate Groups)/metabolism , Amino Acid Motifs/genetics , Amino Acid Sequence , Cell Membrane/metabolism , Consensus Sequence , Molecular Sequence Data , Species Specificity , Transcription, Genetic , Transferases (Other Substituted Phosphate Groups)/chemistry
17.
Mol Microbiol ; 53(4): 1089-98, 2004 Aug.
Article in English | MEDLINE | ID: mdl-15306013

ABSTRACT

Pseudomonas aeruginosa and other bacterial pathogens express one or more homologous extracellular phospholipases C (PLC) that are secreted through the inner membrane via the twin arginine translocase (TAT) pathway. Analysis of TAT mutants of P. aeruginosa uncovered a previously unidentified extracellular PLC that is secreted via the Sec pathway (PlcB). Whereas all presently known PLCs of P. aeruginosa (PlcH, PlcN and PlcB) hydrolyse phosphatidylcholine (PC), only PlcB is active on phosphatidylethanolamine (PE). plcB candidates were identified based on deductions made from bioinformatics data and extant DNA microarray data. Among these candidates, a gene (PA0026) required for the expression of an extracellular PE-PLC was identified. The protein encoded by PA0026 has limited, but significant similarity, over a short region (approximately 60aa of 328), to a class of zinc-dependent prokaryotic PLCs. A conserved His residue of PlcB (His216) that is required for coordinate binding of zinc in this class of PLCs was mutated. Analysis of this mutant established that the protein encoded by PA0026 is PlcB. Three in-dependent recently published reports indicate that homoserine lactone-mediated quorum sensing regulates the expression of PA0026 (i.e. plcB). PlcB, but not PlcH or PlcN, is required for directed twitching motility up a gradient of certain kinds of phospholipids. This response shows specificity for the fatty acid moiety of the phospholipid.


Subject(s)
Chemotaxis/physiology , Phospholipids/metabolism , Pseudomonas aeruginosa/enzymology , Type C Phospholipases/metabolism , Amino Acid Sequence , Computational Biology , Gene Expression Regulation, Bacterial , Humans , Models, Molecular , Molecular Sequence Data , Mutation , Oligonucleotide Array Sequence Analysis , Phosphatidylethanolamines/metabolism , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/growth & development , Pseudomonas aeruginosa/physiology , Type C Phospholipases/chemistry , Type C Phospholipases/genetics
18.
J Biol Chem ; 278(35): 32733-43, 2003 Aug 29.
Article in English | MEDLINE | ID: mdl-12799377

ABSTRACT

Sphingomyelin synthase is the enzyme that synthesizes sphingomyelin (SM) in mammalian cells by transferring a phosphorylcholine moiety from phosphatidylcholine to ceramide. Despite its importance, the gene and/or the protein responsible for this activity has not yet been identified. Here we report the purification, identification, and biochemical characterization of an enzymatic activity that synthesizes SM in Pseudomonas aeruginosa. SM synthase-like activity was found secreted in the culture medium of P. aeruginosa, strains PA01 and PAK, whereas it could not be detected in cultures of Escherichia coli. From the medium of PAK cultures, SM synthase was purified through sequential chromatographic columns. After separation on polyacrylamide-SDS gels and visualization by silver staining, the purified enzyme showed two bands, one of approximately 75 kDa and one of 30-35 kDa. Interestingly, the highly purified SM synthase preparation also showed neutral sphingomyelinase activity. We therefore investigated whether the protein we purified as SM synthase could actually be the previously identified PlcH, a 78-kDa phospholipase C known to hydrolyze phosphatidylcholine and SM in P. aeruginosa. First, the purified SM synthase preparation contained a 78-kDa protein that reacted with monoclonal antibodies raised against purified PlcH. Second, purified PlcH showed SM synthase activity. Third, using different knockout mutant strains for the PlcH operon, PlcH was found to be necessary for SM synthase activity in P. aeruginosa. Interestingly, SM synthase activity was specific to the Pseudomonas PlcH as other bacterial phospholipases did not display SM synthase activity. Biochemical studies on the Pseudomonas SM synthase confirmed that it is a transferase, similar to the mammalian enzyme, that specifically recognizes the choline head-group and the primary hydroxyl on ceramide. This SM synthase did not have reverse transferase activity. In conclusion, the Pseudomonas PlcH also exerts SM synthase activity; therefore, for the first time, we have identified a structural gene for a SM synthase.


Subject(s)
Pseudomonas aeruginosa/enzymology , Transferases (Other Substituted Phosphate Groups)/chemistry , Transferases (Other Substituted Phosphate Groups)/isolation & purification , Chromatography , Dose-Response Relationship, Drug , Electrophoresis, Polyacrylamide Gel , Escherichia coli/metabolism , Hydrogen-Ion Concentration , Mutation , Phosphatidylcholines/chemistry , Phosphorylcholine/chemistry , Sepharose/pharmacology , Silver Staining , Sphingomyelin Phosphodiesterase/metabolism , Substrate Specificity , Time Factors , Transferases (Other Substituted Phosphate Groups)/genetics , Transgenes
19.
Mol Microbiol ; 46(3): 661-76, 2002 Nov.
Article in English | MEDLINE | ID: mdl-12410824

ABSTRACT

In this report we describe the 1,500-fold purification and characterization of the haemolytic phospholipase C (PLC) of Pseudomonas aeruginosa, the paradigm member of a novel PLC/phosphatase superfamily. Members include proteins from Mycobacterium tuberculosis, Bordetella spp., Francisella tularensis and Burkholderia pseudomallei. Purification involved overexpression of the plcHR1,2 operon, ion exchange chromatography and native preparative polyacrylamide gel electrophoresis. Matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry confirmed the presence of two proteins in the purified sample with sizes of 17,117.2 Da (PlcR2) and 78,417 Da (PlcH). Additionally, liquid chromatography electrospray mass spectrometry (LCMS) revealed that PlcH and PlcR2 are at a stoichiometry of 1 : 1. Western blot analysis demonstrated that the enzyme purifies as a heterodimeric complex, PlcHR2. PlcHR2 is only active on choline-containing phospholipids. It is equally active on phosphatidylcholine (PC) and sphingomyelin (SM) and is able to hydrolyse plasmenylcholine phospholipids (plasmalogens). Neither PlcHR2 nor the M. tuberculosis homologues are inhibited by D609 a widely used, competitive inhibitor of the Bacillus cereus PLC. PlcH, PlcR2, and the PlcHR2 complex bind calcium. While calcium has no detectable effect on enzymatic activity, it inhibits the haemolytic activity of PlcHR2. In addition to being required for the secretion of PlcH, the chaperone PlcR2 affects both the enzymatic and haemolytic properties of PlcH. Inclusive in these data is the conclusion that the members of this PC-PLC and phosphatase family possess a novel mechanism for the recognition and hydrolysis of their respective substrates.


Subject(s)
Pseudomonas aeruginosa/enzymology , Type C Phospholipases , Amino Acid Sequence , Calcium/metabolism , Choline , Electrophoresis, Polyacrylamide Gel , Gene Expression Regulation, Bacterial , Hemolysis , Mass Spectrometry , Molecular Sequence Data , Phospholipids/chemistry , Phospholipids/metabolism , Pseudomonas aeruginosa/genetics , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Substrate Specificity , Type C Phospholipases/classification , Type C Phospholipases/genetics , Type C Phospholipases/isolation & purification , Type C Phospholipases/metabolism
20.
Mol Microbiol ; 45(5): 1277-87, 2002 Sep.
Article in English | MEDLINE | ID: mdl-12207696

ABSTRACT

Upon iron restriction, the opportunistic pathogen Pseudomonas aeruginosa produces various virulence factors, including siderophores, exotoxin, proteases and haemolysin. The ferric uptake regulator (Fur) plays a central role in this response and also controls other regulatory genes, such as pvdS, which encodes an alternative sigma factor. This circuit leads to a hierarchical cascade of direct and indirect iron regulation. We used the GeneChip to analyse the global gene expression profiles in response to iron. In iron-starved cells,the expression of 118 genes was increased at least fivefold compared with that in iron-replete cells, whereas the expression of 87 genes was decreased at least fivefold. The GeneChip data correlated well with results obtained using individual lacZ gene fusions. Strong iron regulation was observed for previously identified genes involved in biosynthesis or uptake of the siderophores pyoverdine and pyochelin, utilization of heterologous siderophores and haem and ferrous iron transport. A low-iron milieu led to increased expression of the genes encoding TonB, alkaline protease,PrpL protease, exotoxin A, as well as fumarase C, Mn-dependent superoxide dismutase SodA, a ferredoxin and ferredoxin reductase and several oxidoreductases and dehydrogenases. Iron-controlled regulatory genes included seven alternative sigma factors and five other transcriptional regulators. Roughly 20% of the iron-regulated genes encoded proteins of unknown function and lacked any conclusive homologies. Under low-iron conditions, expression of 26 genes or operons was reduced in a DeltapvdS mutant compared with wild type, including numerous novel pyoverdine biosynthetic genes. The GeneChip proved to be a very useful tool for rapid gene expression analysis and identification of novel genes controlled by Fur or PvdS.


Subject(s)
Genes, Bacterial , Iron/metabolism , Oligopeptides , Pigments, Biological/biosynthesis , Pigments, Biological/genetics , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Gene Expression Profiling , Gene Expression Regulation, Bacterial/drug effects , Genes, Bacterial/drug effects , Iron/pharmacology , Multigene Family , Oligonucleotide Array Sequence Analysis , Pseudomonas aeruginosa/drug effects , Sigma Factor/genetics , Sigma Factor/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...