Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 182
Filter
1.
ACS Appl Energy Mater ; 7(13): 5326-5337, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38994436

ABSTRACT

Hydrophobization of nanotextured catalyst materials is a promising route to enhance the yield of N2 and CO2 conversion into green fuels. However, these applications require a hydrophobic coating to not only promote air trapping but also allow charge transfer at the electrode-electrolyte interface. In this work, nano thin films with thicknesses as low as 7 nm were deposited from the plasma phase of perfluorohexene, perfluorodecene, and perfluorooctane (PFO) precursors using a mild vacuum and gentle powers. Atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS) characterization reveal that the resulting films are conformal and hydrophobic thanks to a good retention of CF2 and CF3 moieties. The PFO films exhibited the highest water contact angle and achieved superhydrophobic states when deposited on top of re-entrant nano features, an indication of successful air trapping. Electrochemical studies further demonstrated that the plasma-deposited PFO films allow charge transfer but could only sustain repeated cyclic voltammetry cycles without losing their hydrophobicity when deposited under optimal conditions. This result indicates that plasma deposition could become a viable route for the hydrophobization of electrocatalysts required to enhance the yield of poorly soluble gas reduction reactions.

2.
J Funct Biomater ; 15(6)2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38921540

ABSTRACT

With the rising demand for medical implants and the dominance of implant-associated failures including infections, extensive research has been prompted into the development of novel biomaterials that can offer desirable characteristics. This study develops and evaluates new titanium-based alloys containing gallium additions with the aim of offering beneficial antibacterial properties while having a reduced stiffness level to minimise the effect of stress shielding when in contact with bone. The focus is on the microstructure, mechanical properties, antimicrobial activity, and cytocompatibility to inform the suitability of the designed alloys as biometals. Novel Ti-33Nb-xGa alloys (x = 3, 5 wt%) were produced via casting followed by homogenisation treatment, where all results were compared to the currently employed alloy Ti-6Al-4V. Optical microscopy, scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS) results depicted a single beta (ß) phase microstructure in both Ga-containing alloys, where Ti-33Nb-5Ga was also dominated by dendritic alpha (α) phase grains in a ß-phase matrix. EDS analysis indicated that the α-phase dendrites in Ti-33Nb-5Ga were enriched with titanium, while the ß-phase was richer in niobium and gallium elements. Mechanical properties were measured using nanoindentation and microhardness methods, where the Young's modulus for Ti-33Nb-3Ga and Ti-33Nb-5Ga was found to be 75.4 ± 2.4 and 67.2 ± 1.6 GPa, respectively, a significant reduction of 37% and 44% with respect to Ti-6Al-4V. This reduction helps address the disproportionate Young's modulus between titanium implant components and cortical bone. Importantly, both alloys successfully achieved superior antimicrobial properties against Gram-negative P. aeruginosa and Gram-positive S. aureus bacteria. Antibacterial efficacy was noted at up to 90 ± 5% for the 3 wt% alloy and 95 ± 3% for the 5 wt% alloy. These findings signify a substantial enhancement of the antimicrobial performance when compared to Ti-6Al-4V which exhibited very small rates (up to 6.3 ± 1.5%). No cytotoxicity was observed in hGF cell lines over 24 h. Cell morphology and cytoskeleton distribution appeared to depict typical morphology with a prominent nucleus, elongated fibroblastic spindle-shaped morphology, and F-actin filamentous stress fibres in a well-defined structure of parallel bundles along the cellular axis. The developed alloys in this work have shown very promising results and are suggested to be further examined towards the use of orthopaedic implant components.

3.
Eur J Pharm Biopharm ; : 114374, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38942176

ABSTRACT

Dental caries is one of the most prevalent non-communicable diseases worldwide, mediated by a multispecies biofilm that consists of high levels of acidogenic bacteria which ferment sugar to acid and cause teeth demineralization. Current treatment practice remains insufficient in addressing 1) rapid clearance of therapeutic agents from the oral environment 2) destroying bacteria that contribute to the healthy oral microbiome. In addition, increasing concerns over antibiotic resistance calls for innovative alternatives. In this study, we developed a pH responsive nano-carrier for delivery of polycationic silver nanoparticles. Branched-PEI capped silver nanoparticles (BPEI-AgNPs) were encapsulated in a tannic acid - Fe (III) complex-modified poly(D,L-lactic-co-glycolic acid) (PLGA) particle (Fe(III)-TA/PLGA@BPEI-AgNPs) to enhance binding to the plaque biofilm and demonstrate "intelligence" by releasing BPEI-AgNPs under acidic conditions that promote dental caries The constructed Fe(III)-TA/PLGA@BPEI-AgNPs (intelligent particles - IPs) exhibited significant binding to an axenic S. mutans biofilm grown on hydroxyapatite. Ag+ ions were released faster from the IPs at pH 4.0 (cariogenic pH) compared to pH 7.4. The antibiofilm results indicated that IPs can significantly reduce S. mutans biofilm volume and viability under acidic conditions. Cytotoxicity on differentiated Caco-2 cells and human gingival fibroblasts indicated that IPs were not cytotoxic. These findings demonstrate great potential of IPs in the treatment of dental caries.

4.
Mater Today Bio ; 26: 101069, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38765246

ABSTRACT

The urgency to address skeletal abnormalities and diseases through innovative approaches has led to a significant interdisciplinary convergence of engineering, 3D printing, and design in developing individualised bioceramic bioscaffolds. This review explores into the recent advancements and future trajectory of non-antibiotic antibacterial bioceramics in bone tissue engineering, an importance given the escalating challenges of orthopaedic infections, antibiotic resistance, and emergent pathogens. Initially, the review provides an in-depth exploration of the complex interactions among bacteria, immune cells, and bioceramics in clinical contexts, highlighting the multifaceted nature of infection dynamics, including protein adsorption, immunological responses, bacterial adherence, and endotoxin release. Then, focus on the next-generation bioceramics designed to offer multifunctionality, especially in delivering antibacterial properties independent of traditional antibiotics. A key highlight of this study is the exploration of smart antibacterial bioceramics, marking a revolutionary stride in medical implant technology. The review also aims to guide the ongoing development and clinical adoption of bioceramic materials, focusing on their dual capabilities in promoting bone regeneration and exhibiting antibacterial properties. These next-generation bioceramics represent a paradigm shift in medical implant technology, offering multifunctional benefits that transcend traditional approaches.

5.
ACS Appl Mater Interfaces ; 16(15): 18449-18458, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38578282

ABSTRACT

Developing novel antibacterial strategies has become an urgent requisite to overcome the increasing pervasiveness of antimicrobial-resistant bacteria and the advent of biofilms. Aggregation-induced emission-based photosensitizers (AIE PSs) are promising candidates due to their unique photodynamic and photothermal properties. Bioengineering structure-inherent AIE PSs for developing thin film coatings is still an unexplored area in the field of nanoscience. We have adopted a synergistic approach combining plasma technology and AIE PS-based photodynamic therapy to develop coatings that can eradicate bacterial infections. Here, we loaded AIE PSs within biomimetic bacterium-like particles derived from a probiotic strain, Lactobacillus fermentum. These hybrid conjugates are then immobilized on polyoxazoline-coated substrates to develop a bioinspired coating to fight against implant-associated infections. These coatings could selectively kill Gram-positive and Gram-negative bacteria, but not damage mammalian cells. The mechanistic studies revealed that the coatings can generate reactive oxygen species that can rupture the bacterial cell membranes. The mRNA gene expression of proinflammatory cytokines confirmed that they can modulate infection-related immune responses. Thus, this nature-inspired design has opened a new avenue for the fabrication of a next-generation antibacterial coating to reduce infections and associated burdens.


Subject(s)
Photochemotherapy , Photosensitizing Agents , Animals , Photosensitizing Agents/chemistry , Anti-Bacterial Agents/chemistry , Biomimetics , Gram-Negative Bacteria , Gram-Positive Bacteria , Bacteria , Postoperative Complications , Mammals
6.
Molecules ; 29(6)2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38542846

ABSTRACT

In the quest to curtail the spread of healthcare-associated infections, this work showcases the fabrication of a cutting-edge antibacterial textile coating armoured with aggregation-induced emission photosensitisers (AIE PS) to prevent bacterial colonisation on textiles. The adopted methodology includes a multi-step process using plasma polymerisation and subsequent integration of AIE PS on their surface. The antibacterial effectiveness of the coating was tested against Pseudomonas aeruginosa and Staphylococcus aureus after light irradiation for 1 h. Furthermore, antibacterial mechanistic studies revealed their ability to generate reactive oxygen species that can damage bacterial cell membrane integrity. The results of this investigation can be used to develop ground-breaking explanations for infection deterrence, principally in situations where hospital fabrics play a critical part in the transmission of diseases. The antibacterial coating for textiles developed in this study holds great promise as an efficient strategy to promote public health and reduce the danger of bacterial diseases through regular contact with fabrics.


Subject(s)
Cross Infection , Staphylococcal Infections , Humans , Anti-Bacterial Agents/pharmacology , Staphylococcus aureus , Textiles , Delivery of Health Care
7.
Nanomaterials (Basel) ; 14(3)2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38334525

ABSTRACT

The atomic force microscope is a versatile tool for assessing the topography, friction, and roughness of a broad spectrum of surfaces, encompassing anti-bacterial nanostructure arrays. Measuring and comparing all these values with one instrument allows clear comparisons of many nanomechanical reactions and anomalies. Increasing nano-Newton-level forces through the cantilever tip allows for the testing and measuring of failure points, damage behavior, and functionality under unfavorable conditions. Subjecting a grade 5 titanium alloy to hydrothermally etched nanostructures while applying elevated cantilever tip forces resulted in the observation of irreversible damage through atomic force microscopy. Despite the damage, a rough and non-uniform morphology remained that may still allow it to perform in its intended application as an anti-bacterial implant surface. Utilizing an atomic force microscope enables the evaluation of these surfaces before their biomedical application.

8.
Cell Mol Life Sci ; 81(1): 49, 2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38252317

ABSTRACT

Intervertebral disc degeneration (IVDD) is one of the most prevalent spinal degenerative disorders and imposes places heavy medical and economic burdens on individuals and society. Mechanical overloading applied to the intervertebral disc (IVD) has been widely recognized as an important cause of IVDD. Mechanical overloading-induced chondrocyte ferroptosis was reported, but the potential association between ferroptosis and mechanical overloading remains to be illustrated in nucleus pulposus (NP) cells. In this study, we discovered that excessive mechanical loading induced ferroptosis and endoplasmic reticulum (ER) stress, which were detected by mitochondria and associated markers, by increasing the intracellular free Ca2+ level through the Piezo1 ion channel localized on the plasma membrane and ER membrane in NP cells. Besides, we proposed that intracellular free Ca2+ level elevation and the activation of ER stress are positive feedback processes that promote each other, consistent with the results that the level of ER stress in coccygeal discs of aged Piezo1-CKO mice were significantly lower than that of aged WT mice. Then, we confirmed that selenium supplementation decreased intracellular free Ca2+ level by mitigating ER stress through upregulating Selenoprotein K (SelK) expression. Besides, ferroptosis caused by the impaired production and function of Glutathione peroxidase 4 (GPX4) due to mechanical overloading-induced calcium overload could be improved by selenium supplementation through Se-GPX4 axis and Se-SelK axis in vivo and in vitro, eventually presenting the stabilization of the extracellular matrix (ECM). Our findings reveal the important role of ferroptosis in mechanical overloading-induced IVDD, and selenium supplementation promotes significance to attenuate ferroptosis and thus alleviates IVDD, which might provide insights into potential therapeutic interventions for IVDD.


Subject(s)
Ferroptosis , Intervertebral Disc Degeneration , Nucleus Pulposus , Phospholipid Hydroperoxide Glutathione Peroxidase , Selenium , Selenoproteins , Animals , Humans , Mice , Cell Membrane , Ion Channels , Selenoproteins/metabolism , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism
9.
Acta Biomater ; 175: 369-381, 2024 02.
Article in English | MEDLINE | ID: mdl-38141932

ABSTRACT

The threat of infection during implant placement surgery remains a considerable burden for millions of patients worldwide. To combat this threat, clinicians employ a range of anti-infective strategies and practices. One of the most common interventions is the use of prophylactic antibiotic treatment during implant placement surgery. However, these practices can be detrimental by promoting the resilience of biofilm-forming bacteria and enabling them to persist throughout treatment and re-emerge later, causing a life-threatening infection. Thus, it is of the utmost importance to elucidate the events occurring during the initial stages of bacterial surface attachment and determine whether any biological processes may be targeted to improve surgical outcomes. Using gene expression analysis, we identified a cellular mechanism of S. aureus which modifies its cell surface charge following attachment to a medical grade titanium surface. We determined the upregulation of two systems involved in the d-alanylation of teichoic acids and the lysylation of phosphatidylglycerol. We supported these molecular findings by utilizing synchrotron-sourced attenuated total reflection Fourier-transform infrared microspectroscopy to analyze the biomolecular properties of the S. aureus cell surface following attachment. As a direct consequence, S. aureus quickly becomes substantially more tolerant to the positively charged vancomycin, but not the negatively charged cefazolin. The present study can assist clinicians in rationally selecting the most potent antibiotic in prophylaxis treatments. Furthermore, it highlights a cellular process that could potentially be targeted by novel technologies and strategies to improve the outcome of antibiotic prophylaxis during implant placement surgery. STATEMENT OF SIGNIFICANCE: The antibiotic tolerance of bacteria in biofilm is a well-established phenomenon. However, the physiological adaptations employed by Staphylococcus aureus to increase its antibiotic tolerance during the early stages of surface attachment are poorly understood. Using multiple techniques, including gene expression analysis and synchrotron-sourced Fourier-transform infrared microspectroscopy, we generated insights into the physiological response of S. aureus following attachment to a medical grade titanium surface. We showed that this phenotypic transition enables S. aureus to better tolerate the positively charged vancomycin, but not the negatively charged cefazolin. These findings shed light on the antibiotic tolerance mechanisms employed by S. aureus to survive prophylactically administered antibiotics and can help clinicians to protect patients from infections.


Subject(s)
Anti-Bacterial Agents , Staphylococcal Infections , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Staphylococcus aureus/physiology , Vancomycin/pharmacology , Cefazolin/metabolism , Titanium/pharmacology , Staphylococcal Infections/prevention & control , Biofilms , Microbial Sensitivity Tests
10.
NPJ Biofilms Microbiomes ; 9(1): 90, 2023 Nov 29.
Article in English | MEDLINE | ID: mdl-38030708

ABSTRACT

Bacterial colonization of implantable biomaterials is an ever-pervasive threat that causes devastating infections, yet continues to elude resolution. In the present study, we report how a rationally designed antibacterial surface containing sharp nanospikes can enhance the susceptibility of pathogenic bacteria to antibiotics used in prophylactic procedures. We show that Staphylococcus aureus, once adhered to a titanium surface, changes its cell-surface charge to increase its tolerance to vancomycin. However, if the Ti surface is modified to bear sharp nanospikes, the activity of vancomycin is rejuvenated, leading to increased bacterial cell death through synergistic activity. Analysis of differential gene expression provided evidence of a set of genes involved with the modification of cell surface charge. Synchrotron-sourced attenuated Fourier-transform infrared microspectroscopy (ATR-FTIR), together with multivariate analysis, was utilized to further elucidate the biochemical changes of S. aureus adhered to nanospikes. By inhibiting the ability of the pathogen to reduce its net negative charge, the nanoengineered surface renders S. aureus more susceptible to positively charged antimicrobials such as vancomycin. This finding highlights the opportunity to enhance the potency of prophylactic antibiotic treatments during implant placement surgery by employing devices having surfaces modified with spike-like nanostructures.


Subject(s)
Staphylococcal Infections , Vancomycin , Humans , Vancomycin/pharmacology , Staphylococcus aureus , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Staphylococcal Infections/drug therapy , Staphylococcal Infections/microbiology , Prostheses and Implants
11.
Materials (Basel) ; 16(18)2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37763578

ABSTRACT

The fight between humans and bacteria has escalated to a new level.

12.
Small ; : e2305469, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37715087

ABSTRACT

The challenge of wound healing, particularly in patients with comorbidities such as diabetes, is intensified by wound infection and the accelerating problem of bacterial resistance to current remedies such as antibiotics and silver. One promising approach harnesses the bioactive and antibacterial compound C-phycocyanin from the microalga Spirulina maxima. However, the current processes of extracting this compound and developing coatings are unsustainable and difficult to achieve. To circumvent these obstacles, a novel, sustainable argon atmospheric plasma jet (Ar-APJ) technology that transforms S. maxima biomass into bioactive coatings is presented. This Ar-APJ can selectively disrupt the cell walls of S. maxima, converting them into bioactive ultrathin coatings, which are found to be durable under aqueous conditions. The findings demonstrate that Ar-APJ-transformed bioactive coatings show better antibacterial activity against Staphylococcus aureus and Pseudomonas aeruginosa. Moreover, these coatings exhibit compatibility with macrophages, induce an anti-inflammatory response by reducing interleukin 6 production, and promote cell migration in keratinocytes. This study offers an innovative, single-step, sustainable technology for transforming microalgae into bioactive coatings. The approach reported here has immense potential for the generation of bioactive coatings for combating wound infections and may offer a significant advance in wound care research and application.

13.
ACS Appl Bio Mater ; 6(8): 2925-2943, 2023 08 21.
Article in English | MEDLINE | ID: mdl-37565698

ABSTRACT

Bone tissue plays a crucial role in protecting internal organs and providing structural support and locomotion of the body. Treatment of hard tissue defects and medical conditions due to physical injuries, genetic disorders, aging, metabolic syndromes, and infections is more often a complex and drawn out process. Presently, dealing with hard-tissue-based clinical problems is still mostly conducted via surgical interventions. However, advances in nanotechnology over the last decades have led to shifting trends in clinical practice toward noninvasive and microinvasive methods. In this review article, recent advances in the development of nanoscale platforms for bone tissue engineering have been reviewed and critically discussed to provide a comprehensive understanding of the advantages and disadvantages of noninvasive and microinvasive methods for treating medical conditions related to hard tissue regeneration and repair.


Subject(s)
Nanotechnology , Tissue Engineering , Tissue Engineering/methods , Bone and Bones/surgery , Drug Delivery Systems , Wound Healing
14.
ACS Nano ; 17(15): 14406-14423, 2023 08 08.
Article in English | MEDLINE | ID: mdl-37506260

ABSTRACT

The proliferation of drug resistance in microbial pathogens poses a significant threat to human health. Hence, treatment measures are essential to surmount this growing problem. In this context, liquid metal nanoparticles are promising. Gallium, a post-transition metal notable for being a liquid at physiological temperature, has drawn attention for its distinctive properties, high antimicrobial efficacy, and low toxicity. Moreover, gallium nanoparticles demonstrate anti-inflammatory properties in immune cells. Gallium can alloy with other metals and be prepared in various composites to modify and tailor its characteristics and functionality. More importantly, the bactericidal mechanism of gallium liquid metal could sidestep the threat of emerging drug resistance mechanisms. Building on this rationale, gallium-based liquid metal nanoparticles can enable impactful and innovative strategic pathways in the battle against antimicrobial resistance. This review outlines the characteristics of gallium-based liquid metals at the nanoscale and their corresponding antimicrobial mechanisms to provide a comprehensive yet succinct overview of their current antimicrobial applications. In addition, challenges and opportunities that require further research efforts have been identified and discussed.


Subject(s)
Anti-Infective Agents , Gallium , Metal Nanoparticles , Humans , Gallium/pharmacology , Anti-Infective Agents/pharmacology , Anti-Bacterial Agents/pharmacology
15.
Pharmaceutics ; 15(7)2023 Jun 27.
Article in English | MEDLINE | ID: mdl-37514024

ABSTRACT

Dental caries is a common and costly multifactorial biofilm disease caused by cariogenic bacteria that ferment carbohydrates to lactic acid, demineralizing the inorganic component of teeth. Therefore, low pH (pH 4.5) is a characteristic signal of the localised carious environment, compared to a healthy oral pH range (6.8 to 7.4). The development of pH-responsive delivery systems that release antibacterial agents in response to low pH has gained attention as a targeted therapy for dental caries. Release is triggered by high levels of acidogenic species and their reduction may select for the establishment of health-associated biofilm communities. Moreover, drug efficacy can be amplified by the modification of the delivery system to target adhesion to the plaque biofilm to extend the retention time of antimicrobial agents in the oral cavity. In this review, recent developments of different pH-responsive nanocarriers and their biofilm targeting mechanisms are discussed. This review critically discusses the current state of the art and innovations in the development and use of smart delivery materials for dental caries treatment. The authors' views for the future of the field are also presented.

16.
J Nanobiotechnology ; 21(1): 193, 2023 Jun 14.
Article in English | MEDLINE | ID: mdl-37316836

ABSTRACT

Prolonged and incurable bacterial infections in soft tissue and bone are currently causing large challenges in the clinic. Two-dimensional (2D) materials have been designed to address these issues, but materials with satisfying therapeutic effects are still needed. Herein, CaO2-loaded 2D titanium carbide nanosheets (CaO2-TiOx@Ti3C2, C-T@Ti3C2) were developed. Surprisingly, this nanosheet exhibited sonodynamic ability, in which CaO2 caused the in situ oxidation of Ti3C2 MXene to produce acoustic sensitiser TiO2 on its surface. In addition, this nanosheet displayed chemodynamic features, which promoted a Fenton reaction triggered by self-supplied H2O2. We detected that C-T@Ti3C2 nanosheets increased reactive oxygen species (ROS) production in response to sonodynamic therapy, which displayed an ideal antibacterial effect. Furthermore, these nanoreactors facilitated the deposition of Ca2+, which promoted osteogenic transformation and enhanced bone quality in osteomyelitis models. Herein, a wound healing model and prosthetic joint infection (PJI) model were established, and the C-T@Ti3C2 nanosheets played a protective role in these models. Taken together, the results indicated that the C-T@Ti3C2 nanosheets function as a multifunctional instrument with sonodynamic features, which might reveal information regarding the treatment of bacterial infections during wound healing.


Subject(s)
Bone and Bones , Hydrogen Peroxide , Bone Regeneration , Wound Healing
17.
ACS Appl Bio Mater ; 6(9): 3472-3483, 2023 09 18.
Article in English | MEDLINE | ID: mdl-37384836

ABSTRACT

Biomaterial-associated infection is an ever-increasing risk with devasting consequences for patients. Considerable research has been undertaken to address this issue by imparting antibacterial properties to the surface of biomedical implants. One approach that generated much interest over recent years was the generation of bioinspired bactericidal nanostructures. In the present report, we have investigated the interplay between macrophages and bacteria on antibacterial nanostructured surfaces to determine the outcome of the so-called "race for the surface". Our results showed that macrophages can indeed outcompete Staphylococcus aureus via multiple mechanisms. The early generation of reactive oxygen species by macrophages, downregulation of bacterial virulence gene expression, and the bactericidal nature of the nanostructured surface itself collectively acted to help the macrophage to win the race. This study highlights the potential of nanostructured surfaces to reduce infection rates and improve the long-term success of biomedical implants. This work can also serve as guidance to others to investigate in vitro host-bacteria interactions on other candidate antibacterial surfaces.


Subject(s)
Biomimetics , Nanostructures , Humans , Biomimetics/methods , Surface Properties , Nanostructures/chemistry , Biocompatible Materials/chemistry , Anti-Bacterial Agents/chemistry
18.
ACS Appl Mater Interfaces ; 15(26): 31114-31123, 2023 Jul 05.
Article in English | MEDLINE | ID: mdl-37339239

ABSTRACT

Hydrogels have been widely used to entrap biomolecules for various biocatalytic reactions. However, solute diffusion in these matrices to initiate such reactions can be a very slow process. Conventional mixing remains a challenge as it can cause irreversible distortion or fragmentation of the hydrogel itself. To overcome the diffusion-limit, a shear-stress-mediated platform named the portable vortex-fluidic device (P-VFD) is developed. P-VFD is a portable platform which consists of two main components, (i) a plasma oxazoline-coated polyvinyl chloride (POx-PVC) film with polyacrylamide and alginate (PAAm/Alg-Ca2+) tough hydrogel covalently bound to its surface and (ii) a reactor tube (L × D: 90 mm × 20 mm) where the aforementioned POx-PVC film could be readily inserted for reactions. Through a spotting machine, the PAAm/Alg-Ca2+ hydrogel can be readily printed on a POx-PVC film in an array pattern and up to 25.4 J/m2 adhesion energy can be achieved. The hydrogel arrays on the film not only offer a strong matrix for entrapping biomolecules such as streptavidin-horseradish peroxidase but are also shear stress-tolerant in the reactor tube, enabling a >6-fold increase in its reaction rate after adding tetramethylbenzidine, relative to incubation. Through using the tough hydrogel and its stably bonded substrate, this portable platform effectively overcomes the diffusion-limit and achieves fast assay detection without causing appreciable hydrogel array deformation or dislocation on the substrate film.

19.
Nanomaterials (Basel) ; 13(9)2023 May 02.
Article in English | MEDLINE | ID: mdl-37177075

ABSTRACT

In the 21st century, infections remain a major problem for society and are one of the leading causes of mortality [...].

20.
Food Chem ; 422: 136159, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37146354

ABSTRACT

Tartrate stabilization remains a necessary step in commercial wine production to avoid the precipitation of crystals in bottled wine. The conventional refrigeration method to prevent crystallization of potassium bitartrate is time-consuming, energy-intensive, and involves a filtration step to remove the sediment. Nevertheless, it is still the most used stabilization method by winemakers. This work exploits for the first time an alternative to traditional cold stabilization that explores the potential of carefully tailored surface coatings obtained by plasma polymerization. Coatings containing amine functional groups were most potent in binding and removing potassium in heat-unstable wines. In contrast, carboxyl acid groups rich surfaces had the most significant impact on heat-stabilized wines. The results of this study demonstrate that surfaces with carefully designed chemical functionalities can remove tartaric acid from wine and induce cold stabilization. This process can operate at higher temperatures, reducing the need for cooling facilities, saving energy, and improving cost-effectiveness.


Subject(s)
Wine , Wine/analysis , Tartrates/chemistry , Crystallization , Potassium
SELECTION OF CITATIONS
SEARCH DETAIL