Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Rep Med ; 5(7): 101611, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38942020

ABSTRACT

Resistance to targeted therapy remains a major clinical challenge in melanoma. To uncover resistance mechanisms, we perform single-cell RNA sequencing on fine-needle aspirates from resistant and responding tumors of patients undergoing BRAFi/MEKi treatment. Among the genes most prominently expressed in resistant tumors is POSTN, predicted to signal to a macrophage population associated with targeted therapy resistance (TTR). Accordingly, tumors from patients with fast disease progression after therapy exhibit high POSTN expression levels and high numbers of TTR macrophages. POSTN polarizes human macrophages toward a TTR phenotype and promotes resistance to targeted therapy in a melanoma mouse model, which is associated with a phenotype change in intratumoral macrophages. Finally, polarized TTR macrophages directly protect human melanoma cells from MEKi-induced killing via CD44 receptor expression on melanoma cells. Thus, interfering with the protective activity of TTR macrophages may offer a strategy to overcome resistance to targeted therapy in melanoma.


Subject(s)
Drug Resistance, Neoplasm , Macrophages , Melanoma , Melanoma/drug therapy , Melanoma/pathology , Melanoma/genetics , Melanoma/metabolism , Humans , Drug Resistance, Neoplasm/genetics , Drug Resistance, Neoplasm/drug effects , Animals , Macrophages/metabolism , Macrophages/drug effects , Mice , Cell Line, Tumor , Molecular Targeted Therapy , Protein Kinase Inhibitors/pharmacology , Hyaluronan Receptors/metabolism , Hyaluronan Receptors/genetics
2.
Gut ; 69(1): 133-145, 2020 01.
Article in English | MEDLINE | ID: mdl-31409605

ABSTRACT

OBJECTIVE: The Fragile X mental retardation (FMR) syndrome is a frequently inherited intellectual disability caused by decreased or absent expression of the FMR protein (FMRP). Lack of FMRP is associated with neuronal degradation and cognitive dysfunction but its role outside the central nervous system is insufficiently studied. Here, we identify a role of FMRP in liver disease. DESIGN: Mice lacking Fmr1 gene expression were used to study the role of FMRP during tumour necrosis factor (TNF)-induced liver damage in disease model systems. Liver damage and mechanistic studies were performed using real-time PCR, Western Blot, staining of tissue sections and clinical chemistry. RESULTS: Fmr1null mice exhibited increased liver damage during virus-mediated hepatitis following infection with the lymphocytic choriomeningitis virus. Exposure to TNF resulted in severe liver damage due to increased hepatocyte cell death. Consistently, we found increased caspase-8 and caspase-3 activation following TNF stimulation. Furthermore, we demonstrate FMRP to be critically important for regulating key molecules in TNF receptor 1 (TNFR1)-dependent apoptosis and necroptosis including CYLD, c-FLIPS and JNK, which contribute to prolonged RIPK1 expression. Accordingly, the RIPK1 inhibitor Necrostatin-1s could reduce liver cell death and alleviate liver damage in Fmr1null mice following TNF exposure. Consistently, FMRP-deficient mice developed increased pathology during acute cholestasis following bile duct ligation, which coincided with increased hepatic expression of RIPK1, RIPK3 and phosphorylation of MLKL. CONCLUSIONS: We show that FMRP plays a central role in the inhibition of TNF-mediated cell death during infection and liver disease.


Subject(s)
Fragile X Mental Retardation Protein/physiology , Hepatitis, Viral, Animal/immunology , Tumor Necrosis Factor-alpha/immunology , Animals , Arenaviridae Infections/immunology , Arenaviridae Infections/pathology , CD8-Positive T-Lymphocytes/immunology , Cell Death/drug effects , Cell Death/immunology , Cell Death/physiology , Cells, Cultured , Cholestasis/immunology , Cholestasis/metabolism , Cholestasis/pathology , Fragile X Mental Retardation Protein/metabolism , Hepatitis, Viral, Animal/pathology , Hepatitis, Viral, Animal/prevention & control , Hepatocytes/pathology , Imidazoles/pharmacology , Imidazoles/therapeutic use , Indoles/pharmacology , Indoles/therapeutic use , Lymphocytic choriomeningitis virus , Male , Mice, Inbred C57BL , Mice, Knockout , Receptor-Interacting Protein Serine-Threonine Kinases/antagonists & inhibitors , Receptor-Interacting Protein Serine-Threonine Kinases/physiology
3.
Sci Signal ; 12(605)2019 10 29.
Article in English | MEDLINE | ID: mdl-31662486

ABSTRACT

Chronic liver disease can induce prolonged activation of hepatic stellate cells, which may result in liver fibrosis. Inactive rhomboid protein 2 (iRhom2) is required for the maturation of A disintegrin and metalloprotease 17 (ADAM17, also called TACE), which is responsible for the cleavage of membrane-bound tumor necrosis factor-α (TNF-α) and its receptors (TNFRs). Here, using the murine bile duct ligation (BDL) model, we showed that the abundance of iRhom2 and activation of ADAM17 increased during liver fibrosis. Consistent with this, concentrations of ADAM17 substrates were increased in plasma samples from mice after BDL and in patients suffering from liver cirrhosis. We observed increased liver fibrosis, accelerated disease progression, and an increase in activated stellate cells after BDL in mice lacking iRhom2 (Rhbdf2-/- ) compared to that in controls. In vitro primary mouse hepatic stellate cells exhibited iRhom2-dependent shedding of the ADAM17 substrates TNFR1 and TNFR2. In vivo TNFR shedding after BDL also depended on iRhom2. Treatment of Rhbdf2-/- mice with the TNF-α inhibitor etanercept reduced the presence of activated stellate cells and alleviated liver fibrosis after BDL. Together, these data suggest that iRhom2-mediated inhibition of TNFR signaling protects against liver fibrosis.


Subject(s)
Carrier Proteins/genetics , Cholestasis/genetics , Liver Cirrhosis/genetics , Signal Transduction/genetics , ADAM17 Protein/genetics , ADAM17 Protein/metabolism , Animals , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Bile Ducts/surgery , Carrier Proteins/metabolism , Cells, Cultured , Cholestasis/metabolism , Etanercept/pharmacology , Gene Expression Regulation , Hepatic Stellate Cells/drug effects , Hepatic Stellate Cells/metabolism , Humans , Ligation , Liver Cirrhosis/metabolism , Liver Cirrhosis/prevention & control , Male , Mice, Inbred C57BL , Mice, Knockout , Receptors, Tumor Necrosis Factor, Type I/genetics , Receptors, Tumor Necrosis Factor, Type I/metabolism , Receptors, Tumor Necrosis Factor, Type II/genetics , Receptors, Tumor Necrosis Factor, Type II/metabolism , Signal Transduction/drug effects
4.
Cell Rep ; 28(8): 2156-2168.e5, 2019 08 20.
Article in English | MEDLINE | ID: mdl-31433989

ABSTRACT

Tumor-associated macrophages (TAMs) represent a major component of the tumor microenvironment supporting tumorigenesis. TAMs re-education has been proposed as a strategy to promote tumor inhibition. However, whether this approach may work in prostate cancer is unknown. Here we find that Pten-null prostate tumors are strongly infiltrated by TAMs expressing C-X-C chemokine receptor type 2 (CXCR2), and activation of this receptor through CXCL2 polarizes macrophages toward an anti-inflammatory phenotype. Notably, pharmacological blockade of CXCR2 receptor by a selective antagonist promoted the re-education of TAMs toward a pro-inflammatory phenotype. Strikingly, CXCR2 knockout monocytes infused in Ptenpc-/-; Trp53pc-/- mice differentiated in tumor necrosis factor alpha (TNF-α)-releasing pro-inflammatory macrophages, leading to senescence and tumor inhibition. Mechanistically, PTEN-deficient tumor cells are vulnerable to TNF-α-induced senescence, because of an increase of TNFR1. Our results identify TAMs as targets in prostate cancer and describe a therapeutic strategy based on CXCR2 blockade to harness anti-tumorigenic potential of macrophages against this disease.


Subject(s)
Cellular Senescence , Macrophages/pathology , Prostatic Neoplasms/pathology , Receptors, Interleukin-8B/antagonists & inhibitors , Animals , Carcinogenesis/metabolism , Carcinogenesis/pathology , Cell Cycle Checkpoints , Cell Line, Tumor , Cell Polarity , Chemokine CXCL2/administration & dosage , Chemokine CXCL2/pharmacology , Humans , Inflammation/pathology , Male , Mice, Inbred C57BL , Mice, Knockout , Neoplasm Staging , Neutralization Tests , PTEN Phosphohydrolase/metabolism , Receptors, Interleukin-8B/metabolism , Signal Transduction/drug effects , Tumor Necrosis Factor-alpha/metabolism , Tumor Suppressor Protein p53/metabolism
5.
Mol Ther ; 27(1): 46-58, 2019 01 02.
Article in English | MEDLINE | ID: mdl-30528085

ABSTRACT

Insulin-like growth factor 1 (IGF1) is an anabolic hormone that controls the growth and metabolism of many cell types. However, IGF1 also mediates cardio-protective effects after acute myocardial infarction (AMI), but the underlying mechanisms and cellular targets are not fully understood. Here we demonstrate that short-term IGF1 treatment for 3 days after AMI improved cardiac function after 1 and 4 weeks. Regional wall motion was improved in ischemic segments, scar size was reduced, and capillary density increased in the infarcted area and the border zone. Unexpectedly, inducible inactivation of the IGF1 receptor (IGF1R) in cardiomyocytes did not attenuate the protective effect of IGF1. Sequential cardiac transcriptomic analysis indicated an altered myeloid cell response in the acute phase after AMI, and, notably, myeloid-cell Igf1r-/- mice lost the protective IGF1 function after I/R. In addition, IGF1 induced an M2-like anti-inflammatory phenotype in bone marrow-derived macrophages and enhanced the number of anti-inflammatory macrophages in heart tissue on day 3 after AMI in vivo. In summary, modulation of the acute inflammatory phase after AMI by IGF1 represents an effective mechanism to preserve cardiac function after I/R.


Subject(s)
Insulin-Like Growth Factor I/therapeutic use , Myeloid Cells/drug effects , Myocardial Infarction/drug therapy , Animals , Echocardiography , Flow Cytometry , Mice , Mice, Inbred C57BL , Mice, Knockout , Real-Time Polymerase Chain Reaction , Receptor, IGF Type 1/genetics , Receptor, IGF Type 1/metabolism
6.
Cancer Biol Ther ; 17(10): 1035-1050, 2016 Oct 02.
Article in English | MEDLINE | ID: mdl-27636533

ABSTRACT

Alphavirus vectors are promising tools for cancer treatment. However, relevant entry mechanisms and interactions with host cells are still not clearly understood. The first step toward a more effective therapy is the identification of novel intracellular alterations that could be associated with cancer aggressiveness and could affect the therapeutic potential of these vectors. In this study, we observed that alphaviruses efficiently infected B16 mouse melanoma tumors/tumor cells in vivo, whereas their transduction efficiency in B16 cells under in vitro conditions was blocked. Therefore, we further aimed to understand the mechanisms pertaining to the differential transduction efficacy of alphaviruses in B16 tumor cells under varying growth conditions. We hypothesized that the tumor microenvironment might alter gene expression in B16 cells, leading to an up-regulation of the expression of virus-binding receptors or factors associated with virus entry and replication. To test our hypothesis, we performed a proteomics analysis of B16 cells cultured in vitro and of B16 cells isolated from tumors, and we identified 277 differentially regulated proteins. A further in-depth analysis to identify the biological and molecular functions of the detected proteins revealed a set of candidate genes that could affect virus infectivity. Importantly, we observed a decrease in the expression of interferon α (IFN-α) in tumor-isolated cells that resulted in the suppression of several IFN-regulated genes, thereby abrogating host cell antiviral defense. Additionally, differences in the expression of genes that regulate cytoskeletal organization caused significant alterations in cell membrane elasticity. Taken together, our findings demonstrated favorable intracellular conditions for alphavirus transduction/replication that occurred during tumor transformation. These results pave the way for optimizing the development of strategies for the application of alphaviral vectors as a potent cancer therapy.

7.
BMC Cancer ; 14: 460, 2014 Jun 20.
Article in English | MEDLINE | ID: mdl-24950740

ABSTRACT

BACKGROUND: The combination of virotherapy and chemotherapy may enable efficient tumor regression that would be unachievable using either therapy alone. In this study, we investigated the efficiency of transgene delivery and the cytotoxic effects of alphaviral vector in combination with 5-fluorouracil (5-FU) in a mouse mammary tumor model (4 T1). METHODS: Replication-deficient Semliki Forest virus (SFV) vectors carrying genes encoding fluorescent proteins were used to infect 4 T1 cell cultures treated with different doses of 5-FU. The efficiency of infection was monitored via fluorescence microscopy and quantified by fluorometry. The cytotoxicity of the combined treatment with 5-FU and alphaviral vector was measured using an MTT-based cell viability assay. In vivo experiments were performed in a subcutaneous 4 T1 mouse mammary tumor model with different 5-FU doses and an SFV vector encoding firefly luciferase. RESULTS: Infection of 4 T1 cells with SFV prior to 5-FU treatment did not produce a synergistic anti-proliferative effect. An alternative treatment strategy, in which 5-FU was used prior to virus infection, strongly inhibited SFV expression. Nevertheless, in vivo experiments showed a significant enhancement in SFV-driven transgene (luciferase) expression upon intratumoral and intraperitoneal vector administration in 4 T1 tumor-bearing mice pretreated with 5-FU: here, we observed a positive correlation between 5-FU dose and the level of luciferase expression. CONCLUSIONS: Although 5-FU inhibited SFV-mediated transgene expression in 4 T1 cells in vitro, application of the drug in a mouse model revealed a significant enhancement of intratumoral transgene synthesis compared with 5-FU untreated mice. These results may have implications for efficient transgene delivery and the development of potent cancer treatment strategies using alphaviral vectors and 5-FU.


Subject(s)
Alphavirus/genetics , Fluorouracil/pharmacology , Gene Transfer Techniques , Genetic Vectors/genetics , Mammary Neoplasms, Animal/genetics , Animals , Cell Line , Cell Line, Tumor , Combined Modality Therapy , Disease Models, Animal , Female , Fluorouracil/administration & dosage , Genes, Reporter , Genetic Therapy , Mammary Neoplasms, Animal/pathology , Mammary Neoplasms, Animal/therapy , Mice , Semliki forest virus/genetics , Transduction, Genetic , Transgenes
SELECTION OF CITATIONS
SEARCH DETAIL